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UNIT-I 

 

Relation:  

Type and compositions of relations 

Let A, B, and C be sets, and let R be a relation from A to B and let S be a relation from 
B to C. That is, R is a subset of A × B and S is a subset of B × C. Then R and S give 
rise to a relation from A to C indicated by R◦S and defined by: 

a (R◦S)c if for some b ∈ B we have aRb and bSc.   

  

is,    

 

R ◦ S = {(a, c)| there exists b ∈ B for which (a, b) ∈ R and (b, c) ∈ S}    

The relation R◦S is known the composition of R and S; it is sometimes denoted simply 
by RS. 

Let R is a relation on a set A, that is, R is a relation from a set A to itself. Then R◦R, the 
composition of R with itself, is always represented. Also, R◦R is sometimes denoted by 
R2. Similarly, R3 = R2◦R = R◦R◦R, and so on. Thus Rn is defined for all positive n. 

Example1: Let X = {4, 5, 6}, Y = {a, b, c} and Z = {l, m, n}. Consider the relation R1 from 
X to Y and R2 from Y to Z. 

 R1 = {(4, a), (4, b), (5, c), (6, a), (6, c)} 

 R2 = {(a, l), (a, n), (b, l), (b, m), (c, l), (c, m), (c, n)} 

 

 

Find the composition of relation (i) R1 o R2 (ii) R1o R1
-1 

Solution: 
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(i) The composition relation R1 o R2 as shown in fig: 

 

R1 o R2 = {(4, l), (4, n), (4, m), (5, l), (5, m), (5, n), (6, l), (6, m), (6, n)} 

(ii) The composition relation R1o R1
-1 as shown in fig: 

 

R1o R1
-1 = {(4, 4), (5, 5), (5, 6), (6, 4), (6, 5), (4, 6), (6, 6)} 

Composition of Relations and Matrices 
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There is another way of finding R◦S. Let MR and MS denote respectively the matrix 
representations of the relations R and S. Then 

Example 

Let P = {2, 3, 4, 5}. Consider the relation R and S on P defined by   

    R = {(2, 2), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5), (5, 3)}   

    S = {(2, 3), (2, 5), (3, 4), (3, 5), (4, 2), (4, 3), (4, 5), (5, 2), (5, 5)}.   

   

Find the matrices of the above relations.   

Use matrices to find the following composition of the relation R and S.   

  (i)RoS       (ii)RoR       (iii)SoR   

Solution: The matrices of the relation R and S are a shown in fig: 

 
 

(i) To obtain the composition of relation R and S. First multiply MR with MS to obtain the 
matrix MR x MS as shown in fig: 

The non zero entries in the matrix MR x MS tells the elements related in RoS. So, 

 

Hence the composition R o S of the relation R and S is 
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1. R o S = {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (4, 2), (4, 5), (5, 2), (5, 3), (5, 4), (5, 5)}.   

(ii) First, multiply the matrix MR by itself, as shown in fig 

 

Hence the composition R o R of the relation R and S is 

1. R o R = {(2, 2), (3, 2), (3, 3), (3, 4), (4, 2), (4, 5), (5, 2), (5, 3), (5, 5)}   

(iii) Multiply the matrix MS with MR to obtain the matrix MS x MR as shown in fig: 

 

The non-zero entries in matrix MS x MR tells the elements related in S o R. 

Hence the composition S o R of the relation S and R is 

1. S o R = {(2, 4) , (2, 5), (3, 3), (3, 4), (3, 5), (4, 2), (4, 4), (4, 5), (5, 2), (5, 3), (5, 4), (5, 5)}.
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Types of Relations 

1. Reflexive Relation: A relation R on set A is said to be a reflexive if (a, a) ∈ R for 
every a ∈ A. 

Example: If A = {1, 2, 3, 4} then R = {(1, 1) (2, 2), (1, 3), (2, 4), (3, 3), (3, 4), (4, 4)}. Is a 
relation reflexive? 

Solution: The relation is reflexive as for every a ∈ A. (a, a) ∈ R, i.e. (1, 1), (2, 2), (3, 3), 
(4, 4) ∈ R. 

2. Irreflexive Relation: A relation R on set A is said to be irreflexive if (a, a) ∉ R for 
every a ∈ A. 

Example: Let A = {1, 2, 3} and R = {(1, 2), (2, 2), (3, 1), (1, 3)}. Is the relation R reflexive 
or irreflexive? 

Solution: The relation R is not reflexive as for every a ∈ A, (a, a) ∉ R, i.e., (1, 1) and (3, 
3) ∉ R. The relation R is not irreflexive as (a, a) ∉ R, for some a ∈ A, i.e., (2, 2) ∈ R. 

3. Symmetric Relation: A relation R on set A is said to be symmetric iff (a, b) ∈ R ⟺ 
(b, a) ∈ R. 

Example: Let A = {1, 2, 3} and R = {(1, 1), (2, 2), (1, 2), (2, 1), (2, 3), (3, 2)}. Is a relation 
R symmetric or not? 

Solution: The relation is symmetric as for every (a, b) ∈ R, we have (b, a) ∈ R, i.e., (1, 
2), (2, 1), (2, 3), (3, 2) ∈ R but not reflexive because (3, 3) ∉ R. 

Example of Symmetric Relation: 

1. Relation ⊥r is symmetric since a line a is ⊥r to b, then b is ⊥r to a. 

2. Also, Parallel is symmetric, since if a line a is ∥ to b then b is also ∥ to a. 

Antisymmetric Relation: A relation R on a set A is antisymmetric iff (a, b) ∈ R and (b, 
a) ∈ R then a = b. 

Example1: Let A = {1, 2, 3} and R = {(1, 1), (2, 2)}. Is the relation R antisymmetric? 

Solution: The relation R is antisymmetric as a = b when (a, b) and (b, a) both belong to 
R. 



9 
 

Example2: Let A = {4, 5, 6} and R = {(4, 4), (4, 5), (5, 4), (5, 6), (4, 6)}. Is the relation R 
antisymmetric? 

Solution: The relation R is not antisymmetric as 4 ≠ 5 but (4, 5) and (5, 4) both belong 
to R. 

5. Asymmetric Relation: A relation R on a set A is called an Asymmetric Relation if for 
every (a, b) ∈ R implies that (b, a) does not belong to R. 

6. Transitive Relations: A Relation R on set A is said to be transitive iff (a, b) ∈ R and 
(b, c) ∈ R ⟺ (a, c) ∈ R. 

Example1: Let A = {1, 2, 3} and R = {(1, 2), (2, 1), (1, 1), (2, 2)}. Is the relation 
transitive? 

Solution: The relation R is transitive as for every (a, b) (b, c) belong to R, we have (a, 
c) ∈ R i.e, (1, 2) (2, 1) ∈ R ⇒ (1, 1) ∈ R. 

7. Identity Relation: Identity relation I on set A is reflexive, transitive and symmetric. So 
identity relation I is an Equivalence Relation. 

Example: A= {1, 2, 3} = {(1, 1), (2, 2), (3, 3)} 

8. Void Relation: It is given by R: A →B such that R = ∅ (⊆ A x B) is a null relation. 
Void Relation R = ∅ is symmetric and transitive but not reflexive. 

9. Universal Relation: A relation R: A →B such that R = A x B (⊆ A x B) is a universal 
relation. Universal Relation from A →B is reflexive, symmetric and transitive. So this is 
an equivalence relation. 

Pictorial representation of relations 

While you may be dealing with functions and relations, understanding them in pictorial 

forms makes it rather easier. Mapping diagrams help in the clearer understanding of the 

relations of numbers in one set of values and the other set of values.  

Using Mapping Diagrams 

Mapping diagrams prove to be useful while you‘re working with functions. They allow 
tracking the relationships between the inputs and the outputs. These diagrams can be 
used to make out which input values are tracked to which output values. They also help 
in ensuring that a function actsually a function. For instance consider that we have the 
following set of pairs, 
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Here, the first number is to be considered as the input and the second number is 
considered as the output. 

A function being a special relation where one element in the domain is paired exactly 
with only one element in the range set. Mapping shows the pattern in which the 
elements are paired. It is just like a flow chart for a specific function that displays the 
input and output for the same. Lines or arrows are drawn ascending from domain to 
range in order to represent the relation between two elements. 
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One-to-one Mapping 
 

 

In the above image, the function represented by mapping above, here each element of 
the pair is ranged with exactly one element on the opposite sides. This is referred to as, 
one-to-one mapping. 

Many-to-one Mapping 
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In the second image, the elements in the range set associate with probably more than 
one element in the range set. In case, the elements in range are known to be mapped 
with more than one element in the domain set, it would be called many-to-one mapping. 

One-to-many Mapping 
 

 

In this type of mapping, the first element in the domain set is known to be mapped with 
multiple elements in the range set. In a case like this when one element from the values 
of the domain set, the mapping indicates one-to-many relations. When one element has 
its relations with multiple elements, it cannot be termed as a function. 

While keeping the elements scattered will make it complicated to understand relations 
and recognize whether or not they are functions, using pictorial representation like 
mapping will makes it rather sophisticated to take up the further steps with the 
mathematical procedures. Undeniably, the relation between various elements of the x 
values and y values. 

 

Closures of relations 

Consider a given set A, and the collection of all relations on A. Let P be a property of 
such relations, such as being symmetric or being transitive. A relation with property P 
will be called a P-relation. The P-closure of an arbitrary relation R on A, indicated P (R), 
is a P-relation such that 

1. R ⊆ P (R) ⊆ S   

(1) Reflexive and Symmetric Closures: The next theorem tells us how to obtain the 
reflexive and symmetric closures of a relation easily. 
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Theorem: Let R be a relation on a set A. Then: 

o R ∪ ∆A is the reflexive closure of R 

o R ∪ R-1 is the symmetric closure of R. 

Example1: 

1. Let A = {k, l, m}. Let R is a relation on A defined by   

2.     R = {(k, k), (k, l), (l, m), (m, k)}.    

Find the reflexive closure of R. 

Solution: R ∪ ∆ is the smallest relation having reflexive property, Hence, 

RF = R ∪ ∆ = {(k, k), (k, l), (l, l), (l, m), (m, m), (m, k)}. 

Example2: Consider the relation R on A = {4, 5, 6, 7} defined by 

1. R = {(4, 5), (5, 5), (5, 6), (6, 7), (7, 4), (7, 7)}   

Find the symmetric closure of R. 

Solution: The smallest relation containing R having the symmetric property is R ∪ R-

1,i.e. 

RS = R ∪ R-1 = {(4, 5), (5, 4), (5, 5), (5, 6), (6, 5), (6, 7), (7, 6), (7, 4), (4, 7), (7, 7)}. 

(2)Transitive Closures: Consider a relation R on a set A. The transitive closure R of a 
relation R of a relation R is the smallest transitive relation containing R. 

Recall that R2 = R◦ R and Rn = Rn-1 ◦ R. We define 

 

The following Theorem applies: 
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Theorem1: R* is the transitive closure of R 

Suppose A is a finite set with n elements. 

R* = R ∪R2  ∪.....∪ Rn 

Theorem 2: Let R be a relation on a set A with n elements. Then 

Transitive (R) = R ∪ R2∪.....∪ Rn 

Example1: Consider the relation R = {(1, 2), (2, 3), (3, 3)} on A = {1, 2, 3}. Then 
R2 = R◦ R = {(1, 3), (2, 3), (3, 3)} and R3 = R2 ◦ R = {(1, 3), (2, 3), (3, 3)} Accordingly, 
Transitive (R) = {(1, 2), (2, 3), (3, 3), (1, 3)} 

Example2: Let A = {4, 6, 8, 10} and R = {(4, 4), (4, 10), (6, 6), (6, 8), (8, 10)} is a 
relation on set A. Determine transitive closure of R. 

Solution: The matrix of relation R is shown in fig: 

 

Now, find the powers of MR as in fig: 
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Hence, the transitive closure of MR is MR
* as shown in Fig (where MR

* is the ORing of a 
power of MR). 

 

Thus, R* = {(4, 4), (4, 10), (6, 8), (6, 6), (6, 10), (8, 10)}. 
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Equivalence relations 

In mathematics, relations and functions are the most important concepts. In class 11 
and class 12, we have studied the important ideas which are covered in the relations 
and function. The concepts are used to solve the problems in different chapters like 
probability, differentiation, integration, and so on. In this article, let us discuss one of the 
concepts called ―Equivalence Relation” with its definition, proofs, different properties 
along with the solved examples. 
Table of Contents: 

 Definition 

 Proof 

 Reflexive Property 

 Symmetric Property 

 Transitive Property 

 Examples 

 Practice Problems 

Equivalence Relation Definition 

A relation R on a set A is said to be an equivalence relation if and only if the relation R 
is reflexive, symmetric and transitive. 

Reflexive: A relation is said to be reflexive, if (a, a) ∈ R, for every a ∈ A. 

Symmetric: A relation is said to be symmetric, if (a, b) ∈ R, then (b, a) ∈ R. 

Transitive: A relation is said to be transitive if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R. 

Equivalence relations can be explained in terms of the following examples: 

 The sign of ‗is equal to‘ on a set of numbers; for example, 1/3 is equal to 3/9. 
 

 For a given set of triangles, the relation of ‗is similar to‘ and ‗is congruent to‘. 
 

 For a given set of integers, the relation of ‗is congruent to, modulo n‘ shows 
equivalence. 
 

 The image and domain are the same under a function, shows the relation of 
equivalence. 
 

 For a set of all angles, ‗has the same cosine‘. 
 

 For a set of all real numbers,‘ has the same absolute value‘. 
 

https://byjus.com/#Definition
https://byjus.com/#Proof
https://byjus.com/#Reflexive%20Property
https://byjus.com/#Symmetric%20Property
https://byjus.com/#Transitive%20Property
https://byjus.com/#Examples
https://byjus.com/#Practice%20Problems
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 Sets 
 

 Relations And Its Types 
 

 Sets For Class 11 
 

 Important Questions Class 11 Maths Chapter 1 Sets 

Equivalence Relation Proof 

Here is an equivalence relation example to prove the properties. 

Let us assume that R be a relation on the set of ordered pairs of positive integers such 
that ((a, b), (c, d))∈ R if and only if ad=bc. Is R an equivalence relation? 

In order to prove that R is an equivalence relation, we must show that R is reflexive, 
symmetric and transitive. 

The Proof for the given condition is given below: 
 

Reflexive Property 

According to the reflexive property, if (a, a) ∈ R, for every a∈A 

For all pairs of positive integers, 

((a, b),(a, b))∈ R. 

Clearly, we can say 

ab = ab for all positive integers. 

Hence, the reflexive property is proved. 
 

Symmetric Property 

From the symmetric property, 

if (a, b) ∈ R, then we can say (b, a) ∈ R 

For the given condition, 

if ((a, b),(c, d)) ∈ R, then ((c, d),(a, b)) ∈ R. 

If ((a, b),(c, d))∈ R, then ad = bc and cb = da 

since multiplication is commutative. 

Therefore ((c, d),(a, b)) ∈ R 

https://byjus.com/maths/sets/
https://byjus.com/maths/relations-and-its-types/
https://byjus.com/maths/sets-for-class-11/
https://byjus.com/maths/important-questions-class-11-maths-chapter-1-sets/
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Hence symmetric property is proved. 
 

Transitive Property 

From the transitive property, 

if (a, b) ∈ R and (b, c) ∈ R, then (a, c) also belongs to R 

For the given set of ordered pairs of positive integers, 

((a, b), (c, d))∈ R and ((c, d), (e, f))∈ R, 

then ((a, b),(e, f) ∈ R. 

Now, assume that ((a, b), (c, d))∈ R and ((c, d), (e, f)) ∈ R. 

Then we get, ad = cb and cf = de. 

The above relation implies that a/b = c/d and that c/d = e/f, 

so a/b = e/f we get af = be. 

Therefore ((a, b),(e, f))∈ R. 

Hence transitive property is proved. 
 

Equivalence Relation Examples 

Go through the equivalence relation examples and solutions provided here 

Question 1: 

Let assume that F is a relation on the set R real numbers defined by xFy if and only if x-
y is an integer. Prove that F is an equivalence relation on R. 

Solution: 

Reflexive: Consider x belongs to R,then x – x = 0 which is an integer. Therefore xFx. 

Symmetric: Consider x and y belongs to R and xFy. Then x – y is an integer. Thus, y – x 
= – ( x – y), y – x is also an integer. Therefore yFx. 

Transitive: Consider x and y belongs to R, xFy and yFz. Therefore x-y and y-z are 
integers. According to the transitive property, ( x – y ) + ( y – z ) = x – z is also an 
integer. So that xFz. 

Thus, R is an equivalence relation on R. 

Question 2: 

Show that the relation R is an equivalence relation in the set A = { 1, 2, 3, 4, 5 } given by 
the relation R = { (a, b):|a-b| is even }. 

Solutio : 
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R = { (a, b):|a-b| is even }. Where a, b belongs to A 

Reflexive Property : 

From the given relation, 

|a – a| = | 0 |=0 

And 0 is always even. 

Thus, |a-a| is even 

Therefore, (a, a) belongs to R 

Hence R is Reflexive 

Symmetric Property : 

From the given relation, 

|a – b| = |b – a| 

We know that |a – b| = |-(b – a)|= |b – a| 

Hence |a – b| is even, 

Then |b – a| is also even. 

Therefore, if (a, b) ∈ R, then (b, a) belongs to R 

Hence R is symmetric. 

Transitive Property : 

If |a-b| is even, then (a-b) is even. 

Similarly, if |b-c| is even, then (b-c) is also even. 

Sum of even number is also even 

So, we can write it as a-b+ b-c is even 

Then, a – c is also even 

So, 

|a – b| and |b – c| is even , then |a-c| is even. 

Therefore, if (a, b) ∈ R and (b, c) ∈ R, then (a, c) also belongs to R 

Hence R is transitive. 
 

Practice problems on Equivalence Relation 

Solve the practise problems on the equivalence relation given below: 
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1. Prove that the relation R is an equivalence relation, given that the set of complex 
numbers is defined by z1 R z2 ⇔[(z1-z2)/(z1+z2)] is real. 
 

2. Show that the given relation R is an equivalence relation, which is defined by (p, 

q) R (r, s) ⇒ (p+s)=(q+r) 
 

3. Check the reflexive, symmetric and transitive property of the relation x R y, if and 
only if y is divisible by x, where x, y ∈ N. 

Frequently Asked Questions on Equivalence Relation 

What is meant by equivalence relation? 

In mathematics, the relation R on the set A is said to be an equivalence relation, if the 
relation satisfies the properties, such as reflexive property, transitive property, and 
symmetric property. 

What are the three different properties of the equivalence relation? 

The three different properties of equivalence relation are: 
 
Reflexive Property 
 
Symmetric Property 
 
Transitive Property 

Explain reflexive, transitive and symmetric property. 

A relation R is said to be reflective, if (x,x) ∈ R, for every x ∈ set A 
 

A relation R is said to be symmetric, if (x,y) ∈ R, then (y, x) ∈ R 
 
A relation R is said to be transitive, if (x, y) ∈ R and (y,z)∈ R, then (x, z) ∈ R 

Can we say the empty relation is an equivalence relation? 

We can say that the empty relation on the empty set is considered as an equivalence 
relation. But, the empty relation on the non-empty set is not considered as an 
equivalence relation. 

Can we say every relation is a function? 

No, every relation is not considered as a function, but every function is considered as a 
relation. 
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To learn equivalence relation easily and engagingly, register with BYJU‘S – The 
Learning App and also watch interactive videos to get information for other Maths-
related concepts. 

 

Partial ordering relation 

A relation R on a set A is called a partial order relation if it satisfies the following three 
properties: 

1. Relation R is Reflexive, i.e. aRa ∀ a∈A. 

2. Relation R is Antisymmetric, i.e., aRb and bRa ⟹ a = b. 

3. Relation R is transitive, i.e., aRb and bRc ⟹ aRc. 

Example1: Show whether the relation (x, y) ∈ R, if, x ≥ y defined on the set of +ve 
integers is a partial order relation. 

Solution: Consider the set A = {1, 2, 3, 4} containing four +ve integers. Find the relation 
for this set such as R = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (1, 1), (2, 2), (3, 3), (4, 
4)}. 

Reflexive: The relation is reflexive as for every a ∈ A. (a, a) ∈ R, i.e. (1, 1), (2, 2), (3, 3), 
(4, 4) ∈ R. 

Antisymmetric: The relation is antisymmetric as whenever (a, b) and (b, a) ∈ R, we 
have a = b. 

Transitive: The relation is transitive as whenever (a, b) and (b, c) ∈ R, we have (a, c) ∈ 
R. 

Example: (4, 2) ∈ R and (2, 1) ∈ R, implies (4, 1) ∈ R. 

As the relation is reflexive, antisymmetric and transitive. Hence, it is a partial order 
relation. 

Example2: Show that the relation 'Divides' defined on N is a partial order relation. 

Solution: 

Reflexive: We have a divides a, ∀ a∈N. Therefore, relation 'Divides' is reflexive. 

Antisymmetric: Let a, b, c ∈N, such that a divides b. It implies b divides a iff a = b. So, 
the relation is antisymmetric. 

Transitive: Let a, b, c ∈N, such that a divides b and b divides c. 
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Then a divides c. Hence the relation is transitive. Thus, the relation being reflexive, 
antisymmetric and transitive, the relation 'divides' is a partial order relation. 

Example3: (a) The relation ⊆ of a set of inclusion is a partial ordering or any collection 
of sets since set inclusion has three desired properties: 

1. A ⊆ A for any set A. 

2. If A ⊆ B and B ⊆ A then B = A. 

3. If A ⊆ B and B ⊆ C then A ⊆ C 

(b) The relation ≤ on the set R of real no that is Reflexive, Antisymmetric and transitive. 

(c) Relation ≤ is a Partial Order Relation. 

n-Ary Relations 

By an n-ary relation, we mean a set of ordered n-tuples. For any set S, a subset of the 
product set Sn is called an n-ary relation on S. In particular, a subset of S3 is called a 
ternary relation on S. 

Partial Order Set (POSET): 

The set A together with a partial order relation R on the set A and is denoted by (A, R) is 
called a partial orders set or POSET. 

Total Order Relation 

Consider the relation R on the set A. If it is also called the case that for all, a, b ∈ A, we 
have either (a, b) ∈ R or (b, a) ∈ R or a = b, then the relation R is known total order 
relation on set A. 

Example: Show that the relation '<' (less than) defined on N, the set of +ve integers is 
neither an equivalence relation nor partially ordered relation but is a total order relation. 

Solution: 

Reflexive: Let a ∈ N, then a < a 
⟹ '<' is not reflexive. 

As, the relation '<' (less than) is not reflexive, it is neither an equivalence relation nor the 
partial order relation. 

But, as ∀ a, b ∈ N, we have either a < b or b < a or a = b. So, the relation is a total order 
relation. 
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Equivalence Class 

Consider, an equivalence relation R on a set A. The equivalence class of an element a 
∈ A, is the set of elements of A to which element a is related. It is denoted by [a]. 

Example: Let R be an equivalence relations on the set A = {4, 5, 6, 7} defined by 
                  R = {(4, 4), (5, 5), (6, 6), (7, 7), (4, 6), (6, 4)}. 

Determine its equivalence classes. 

Solution: The equivalence classes are as follows: 
                    {4} = {6} = {4, 6} 
                    {5} = {5} 
                    {7} = {7}. 

Circular Relation 

Consider a binary relation R on a set A. Relation R is called circular if (a, b) ∈ R and (b, 
c) ∈ R implies (c, a) ∈ R. 

Example: Consider R is an equivalence relation. Show that R is reflexive and circular. 

Solution: Reflexive: As, the relation, R is an equivalence relation. So, reflexivity is the 
property of an equivalence relation. Hence, R is reflexive. 

Circular: Let (a, b) ∈ R and (b, c) ∈ R 
                  ⇒ (a, c) ∈ R       (∵ R is transitive) 
                  ⇒ (c, a) ∈ R       (∵ R is symmetric) 

Thus, R is Circular. 

Compatible Relation 

A binary relation R on a set A that is Reflexive and symmetric is called Compatible 
Relation. 

Every Equivalence Relation is compatible, but every compatible relation need not be an 
equivalence. 

Example: Set of a friend is compatible but may not be an equivalence relation. 

Friend       Friend 
a → b,       b → c     but possible that a and c are not friends. 
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Function:  

Types 

Function, in mathematics, an expression, rule, or law that defines a relationship 

between one variable (the independent variable) and another variable (the dependent 

variable). Functions are ubiquitous in mathematics and are essential for formulating 

physical relationships in the sciences. The modern definition of function was first given 

in 1837 by the German mathematician Peter Dirichlet: 

This relationship is commonly symbolized as y = f(x). In addition to f(x), other 

abbreviated symbols such as g(x) and P(x) are often used to represent functions of the 

independent variable x, especially when the nature of the function is unknown or 

unspecified. 

Common Functions 

Many widely used mathematical formulas are expressions of known functions. For 
example, the formula for the area of a circle, A = πr2, gives the dependent 
variable A (the area) as a function of the independent variable r (the radius). Functions 
involving more than two variables also are common in mathematics, as can be seen in 
the formula for the area of a triangle, A = bh/2, which defines A as a function of 
both b (base) and h (height). In these examples, physical constraints force the 
independent variables to be positive numbers. When the independent variables are also 
allowed to take on negative values—thus, any real number—the functions are known as 
real-valued functions. 

The formula for the area of a circle is an example of a polynomial function. The general 

form for such functions isP(x) = a0 + a1x + a2x
2+⋯+ anx

n,where the coefficients 

(a0, a1, a2,…, an) are given, x can be any real number, and all the powers of x are 

counting numbers (1, 2, 3,…). (When the powers of x can be any real number, the result 

is known as an algebraic function.) Polynomial functions have been studied since the 

earliest times because of their versatility—practically any relationship involving real 

numbers can be closely approximated by a polynomial function. Polynomial functions 

are characterized by the highest power of the independent variable. Special names are 

commonly used for such powers from one to five—linear, quadratic, cubic, quartic, and 

quintic. 

Polynomial functions may be given geometric representation by means of analytic 
geometry. The independent variable x is plotted along the x-axis (a horizontal line), and 
the dependent variable y is plotted along the y-axis (a vertical line). The graph of the 
function then consists of the points with coordinates (x, y) where y = f(x). For example, 
the graph of the cubic equation f(x) = x3 − 3x + 2 is shown in the figure. 

https://www.britannica.com/science/mathematics
https://www.merriam-webster.com/dictionary/ubiquitous
https://www.britannica.com/biography/Peter-Gustav-Lejeune-Dirichlet
https://www.britannica.com/science/circle-mathematics
https://www.britannica.com/science/real-number
https://www.britannica.com/science/polynomial-equation
https://www.britannica.com/science/algebraic-function
https://www.britannica.com/science/analytic-geometry
https://www.britannica.com/science/analytic-geometry
https://www.britannica.com/science/graph-mathematics
https://www.britannica.com/science/coordinate-system
https://www.britannica.com/science/equation
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Plot of the cubic equation f(x) = x3 − 3x + 2. The plotted points are where changes in 
curvature occur. 

Encyclopædia Britannica, Inc. 

Another common type of function that has been studied since antiquity is the 
trigonometric functions, such as sin x and cos x, where x is the measure of an angle 
(see figure). Because of their periodic nature, trigonometric functions are often used to 
model behaviour that repeats, or ―cycles.‖ Nonalgebraic functions, such 
as exponential and trigonometric functions, are also known as transcendental functions. 

 

https://www.britannica.com/science/exponential-function
https://www.britannica.com/science/transcendental-function
https://cdn.britannica.com/88/62088-004-8245C6C2/graph-curve-calculus-help-steps-x-shape.jpg
https://cdn.britannica.com/57/4757-050-7520E8C0/functions-Graphs-each-sine-cosine-tangent-cotangent.jpg
https://cdn.britannica.com/88/62088-004-8245C6C2/graph-curve-calculus-help-steps-x-shape.jpg
https://cdn.britannica.com/57/4757-050-7520E8C0/functions-Graphs-each-sine-cosine-tangent-cotangent.jpg
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graphs of some trigonometric functions 
 

Note that each of these functions is periodic. Thus, the sine and cosine functions repeat 
every 2π, and the tangent and cotangent functions repeat every π. 

Encyclopædia Britannica, Inc. 

Complex Functions 

Practical applications of functions whose variables are complex numbers are not so 
easy to illustrate, but they are nevertheless very extensive. They occur, for example, in 
electrical engineering and aerodynamics. If the complex variable is represented in the 
form z = x + iy, where i is the imaginary unit (the square root of −1) and x and y are real 
variables (see figure), it is possible to split the complex function into real and imaginary 
parts: f(z) = P(x, y) + iQ(x, y). 

 
 

point in the complex plane 
 

A point in the complex plane. Unlike real numbers, which can be located by a single 
signed (positive or negative) number along a number line, complex numbers require a 

plane with two axes, one axis for the real number component and one axis for the 
imaginary component. Although the complex plane looks like the ordinary two-

dimensional plane, where each point is determined by an ordered pair of real numbers 
(x, y), the point x + iy is a single number. 

Encyclopædia Britannica, Inc. 

 

https://www.britannica.com/science/complex-number
https://www.britannica.com/science/aerodynamics
https://www.britannica.com/science/complex-variable
https://www.britannica.com/science/square-root
https://cdn.britannica.com/85/26985-004-AB951845/numbers-plane-point-number-component-axis-axes.jpg
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Inverse Functions 

By interchanging the roles of the independent and dependent variables in a given 
function, one can obtain an inverse function. Inverse functions do what their name 
implies: they undo the action of a function to return a variable to its original state. Thus, 
if for a given function f(x) there exists a function g(y) such that g(f(x)) = x and f(g(y)) = y, 
then g is called the inverse function of f and given the notation f−1, where by convention 
the variables are interchanged. For example, the function f(x) = 2x has the inverse 
function f−1(x) = x/2. 

Other Functional Expressions 

A function may be defined by means of a power series. For example, the infinite series

could be used to define these functions for all complex 
values of x. Other types of series and also infinite products may be used when 
convenient. An important case is the Fourier series, expressing a function in terms of 

sines and cosines:  

Such representations are of great importance in physics, particularly in the study 
of wave motion and other oscillatory phenomena. 

Sometimes functions are most conveniently defined by means of differential equations. 
For example, y = sin x is the solution of the differential equation d2y/dx2 + y = 0 
having y = 0, dy/dx = 1 when x = 0; y = cos x is the solution of the same equation 
having y = 1, dy/dx = 0 when x = 0. 

 

Composition of function 

In this lesson, I will go over eight (8) worked examples to illustrate the process involved 
in function composition. 

If we are given two functions, it is possible to create or generate a ―new‖ function by 
composing one into the other. The step involved is similar when a function is being 
evaluated for a given value. For instance, evaluate the function below for x = 3x=3. 
 

https://www.britannica.com/science/inverse-function
https://www.britannica.com/science/inverse-function
https://www.britannica.com/science/power-series
https://www.britannica.com/science/infinite-series
https://www.britannica.com/science/infinite-series
https://www.merriam-webster.com/dictionary/infinite
https://www.britannica.com/science/Fourier-series
https://www.britannica.com/science/wave-motion
https://www.britannica.com/science/differential-equation
https://www.britannica.com/science/differential-equation
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It is obvious that I need to replace each xx by the given value then simplify. 

 

 

General Rule of Composition of Function 

Suppose the two given functions are ff and gg, the composition of  f \circ gf∘g is defined 
by 
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Also, the composition of g \circ fg∘f is defined by 
 

 

Few notes about the symbolic “formula” above: 
 

 The order in function composition matters! You always compose functions from 
right to left. Therefore, given a function, its input is always the one to its right 
side. In other words, the right function goes inside the left function. 
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 Notice in f \circ g = f\left[ {g\left( x \right)} \right]f∘g=f[g(x)] , the input or ―inner 
function‖ is function gg because it is to the right of function ffwhich is the main or 
―outer function‖. 
 

 In terms of the order of composition, do you see the same pattern in g \circ f = 

g\left[ {f\left( x \right)} \right]g∘f=g[f(x)] ? That‘s right! The function ff is the inner 
function of the outer function gg. 
 

Let us go over a few examples to see how function composition works. You will realize 
later that it is simply an exercise of algebraic substitution and simplification. 

Examples of How to Compose Functions 

Example 1: Perform the indicated function composition: 
 

 

The order of composition is important. Notice that in f \circ gf∘g , we want the 
function g\left( x \right)g(x) to be the input of the main function {f\left( x \right)}f(x). 
It should look like this: 

 

I start by writing down the main or outer function f\left( x \right)f(x) , and in every 
instance of xx, I will substitute the full value of g\left( x \right)g(x). 
Then, I‘ll do whatever is needed to simplify the expressions such as squaring the 
binomial, applying the distributive property, and combining like terms. Other than that, 
there‘s really nothing much to it. 

Let me show you what I meant by that. 
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Example 2: Perform the indicated function composition: 

 

I need to find the composite function g \circ fg∘f which means function ff is the input of 
function gg. 
 

 

Recursively defined function 

In mathematics and computer science, a recursive definition, or inductive definition, 
is used to define the elements in a set in terms of other elements in the set 
(Aczel 1977:740ff). Some examples of recursively-definable objects 
include factorials, natural numbers, Fibonacci numbers, and the Cantor ternary set.[1] 

A recursive definition of a function defines values of the function for some inputs in 
terms of the values of the same function for other (usually smaller) inputs. For example, 
the factorial function n! is defined by the rules 

0! = 1. 

(n + 1)! = (n + 1)·n!. 

This definition is valid for each natural number n, because the recursion eventually 
reaches the base case of 0. The definition may also be thought of as giving a 
procedure for computing the value of the function n!, starting from n = 0 and proceeding 
onwards with n = 1, n = 2, n = 3 etc. 

The recursion theorem states that such a definition indeed defines a function that is 
unique. The proof uses mathematical induction.[2] 

An inductive definition of a set describes the elements in a set in terms of other 
elements in the set. For example, one definition of the set N of natural numbers is: 

1. 1 is in N. 

2. If an element n is in N then n + 1 is in N. 

3. N is the intersection of all sets satisfying (1) and (2). 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Element_(mathematics)
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Peter_Aczel
https://en.wikipedia.org/wiki/Factorial
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Cantor_set
https://en.wikipedia.org/wiki/Recursive_definition#cite_note-1
https://en.wikipedia.org/wiki/Recursive
https://en.wikipedia.org/wiki/Definition
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Factorial
https://en.wikipedia.org/wiki/Base_case_(recursion)
https://en.wikipedia.org/wiki/Recursion#The_recursion_theorem
https://en.wikipedia.org/wiki/Mathematical_induction
https://en.wikipedia.org/wiki/Recursive_definition#cite_note-2
https://en.wikipedia.org/wiki/Natural_number
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There are many sets that satisfy (1) and (2) – for example, the set {1, 1.649, 2, 2.649, 3, 
3.649, ...} satisfies the definition. However, condition (3) specifies the set of natural 
numbers by removing the sets with extraneous members. Note that this definition 
assumes that N is contained in a larger set (such as the set of real numbers) — in which 
the operation + is defined. 

Properties of recursively defined functions and sets can often be proved by an induction 
principle that follows the recursive definition. For example, the definition of the natural 
numbers presented here directly implies the principle of mathematical induction for 
natural numbers: if a property holds of the natural number 0 (or 1), and the property 
holds of n+1 whenever it holds of n, then the property holds of all natural numbers 
(Aczel 1977:742). 

 

Mathematical Induction:  

Piano‟s axioms 

In our previous chapters, we were very careful when proving our various propositions 

and theorems to only use results we knew to be true. However, many of the statements 

that we take to be true had to be proven at some point. Those proofs, of course, relied 

on other true statements. If we continue to ―trace back‖ our mathematics proofs, we 

begin to notice that mathematics must have some initial set of true statements that 

cannot be proven. These statements, known as axioms, are the starting point for any 

mathematical theory. 

In this chapter, we will axiomatically define the natural numbers N. As we move through 

the various axioms, we will see that each one is crucial in defining N in such a way that 

they are equal to {0, 1, 2, 3, . . .}, which are the natural numbers that we know and love. 

After establishing this, we will establish the basic arithmetic operations on N by defining 

addition and multiplication. 

Axiomatizaing the Natural Numbers  

In this section, we will develop the Peano Axioms and use them to provide a completely 

formal definition of the natural numbers N. In what follows, it is best to train yourself to 

assume nothing and use only statements that are known to be true via axioms or 

statements that follow from these axioms. We wil formalize the notion of equality and 

then present the Peano axioms. 

The Notion of Equality 

When approaching mathematics axiomatically, it is important to not assume anything at 

all, including something as rudimentary as how equality behaves. After all, ―=‖ is merely 

a symbol until we declare it to have some important properties. Below, we will define the 
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natural numbers N axiomatically. Before we get deep into this, let‘s establish the 

properties that ―=‖ should have. First, every natural number should be equal to itself; this 

is known as the reflexivity axiom. 

Axiom 1. For every x ∈ N, x = x 

Next, if one natural number equals a second one, then that second one should equal 

the first one. This is called the symmetry axiom. 

Axiom 2. For every x, y ∈ N, if x = y, then y = x. 

The next property allows us to say that if one natural number is equal to a second, and 

that second natural number is equal to a third, then the first and third are equal to each 

other. This is known as the transitivity axiom. 

Axiom 3. For every x, y, z ∈ N, if x = y and y = z, then x = z 

The above three properties of reflexivity, symmetry, and transitivity come up numerous 

times in essentially every mathematical field. Equality is an example of what is called a 

relation, and relations that enjoy the above three properties are known as equivalence 

relations. 

There remains one last axiom related to equality. In each of the above axioms, 

whenever we used a symbol (like x, y, or z), we always had an assumption that these 

elements were in the natural numbers. If we don‘t make this assumption, then we may 

run into problems. To help get around this, the fourth axiom, called the closure of 

equality axiom, says that if you have a natural number that is equal to something, then 

that ―something‖ also has to be a natural number. 

Axiom 4. For all x and y, if x ∈ N and x = y, then y ∈ N. 

In other words, the only way for something to be equal to a natural number is for it to be 

a natural number itself. 

In different versions of the Peano axioms, the above four axioms are excluded, as they 

these properties of equality are frequently assumed to be true as part of that logic 

system. For completeness, though, we include them in these notes. Furthermore, their 

inclusion here highlights the importance of questioning even the most basic 

mathematical assumptions. 

The Peano Axioms 

Now, we are ready to present the main Peano axioms. It is important to keep in mind 

that when Peano and others constructed these axioms, their goal was to provide the 

fewest axioms that would generate the natural numbers that everyone was familiar with. 
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The insight is that this could be done by asserting the existence of at least one natural 

number, and then defining a function, called successor function, that can be used to 

construct the remaining natural numbers 

An obvious element to axiomatically include in the natural numbers is zero. 

Axiom 5. 0 is a natural number. That is, 0 ∈ N. 

In alternate versions of the Peano axioms, Axiom 5 actually replaces 0 with 1. This 

creates an almost identical set of natural numbers, which correspond to ―positive whole 

numbers‖ (as we known them now). Whether a mathematician includes 0 in the natural 

numbers or not depends on the context. We use the convention of including 0 as a 

natural number. 

At this point, we are only guaranteed the existence of a single natural number, 0. The 

next axiom uses the successor function to generate other natural numbers. As its name 

implies, the successor function is a function S that has as its domain N. The next axiom 

simply states that the co-domain of S is also N. 

Axiom 6. If x ∈ N, then S(x) ∈ N. That is, if x is a natural number, then so its successor. 

As the above axiom implies, we will commonly refer to S(x) as the successor of x. 

Intuitively, we should think of S(x) as x+1. Of course, we cannot formally define it this 

way yet since we do not know what + means! At this point, we are still quite far away 

from having the natural numbers as we know them. For example, if we have N = {0} and 

define S(0) = 0, then all of the above axioms are satisfied. We, of course, want to avoid 

this. One way to ensure this is to insist that 0 is not the successor of any natural number 

(including itself, of course). 

Axiom 7. For every natural number x ∈ N, S(x) = 0 is false. 

Rephrasing this using our knowledge of functions, we can say that the preimage of 0 

under S in the natural numbers is the empty set. At this point, we are slightly closer to 

having N look more like the natural numbers we know. In particular, we know that S(0) 

is not equal to 0, and thus it must equal some other natural number. We can denote this 

natural number by 1. Thus, we can define 1 by S(0) = 1. 

At this point, we know that N contains at least two natural numbers, 0 and 1. If we were 

to stop here, though, we could not be guaranteed that all the rest of the natural numbers 

(as we know them) exist. For example, we could define N = {0, 1} where S(0) = 1 and 

S(1) = 1. Again, using our knowledge of functions, we recognize that the fat that S(0) = 

1 and S(1) = 1 means that the S is not an injective function. We would like this 

successor function to be injective, so we have the following axiom. 
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Axiom 8. For all x, y ∈ N, if S(x) = S(y), then x = y. 

The above axiom has some very important ramifications. First, it excludes the possibility 

of defining N to be just {0, 1}. To see why, notice that we already have that S(0) = 1 and, 

by injectivity, we cannot have that S(1) = 1. Axiom 6 excludes the possibility that S(1) = 

0. Thus, S(1) must be some other natural number, which we denote as 2. Thus, we can 

define 2 = S(1).. A similar argument gives that S(2) cannot be 0, 1, or 2. Thus, it must 

be some other natural number, which we call 3. Continuing in this pattern, we see that N 

must contain all the natural numbers that we know! 

At this point, we have established that N must include 0, its successor 1 = S(0), its 

successor‘s successor 2 = S(1), and so on. Thus, we formally have that N must include 

0, S(0), S(S(0)), S(S(S(0))), . . . . Of course, to avoid so many nested applications of S, 

we use the numerals 1, 2, 3 to denote S(0), S(S(0)), and S(S(S(0))), respectively. 

We are, however, not done. These first eight axioms have pushed our formal definition 

of N to include all of the ―usual‖ natural numbers that we know and love. That is, we 

know now that 

{0, 1, 2, . . .} ⊂ N. 

However, what disallows our axiomatic N from containing more? So far, nothing does. 

To see this, let‘s consider this version of N that satisfies all the above axioms, but is not 

the usual natural numbers we know: 

N = {0, 1, 2, 3, . . . , } ∪ {a, b} 

That is, this version of N contains all the natural numbers and also includes two other 

symbols, a and b. We also need to descibe the successor function. On the portion {0, 1, 

2, 3, . . . , }, we define S in the way described above, where S(0) = 1, S(1) = 2, S(2) = 3, 

and so on. On the portion {a, b}, we can define S(a) = b and S(b) = a. This version of N 

with this successor function satisfies all the axioms, but is ―larger‖ than we want our 

natural numbers to be. The next (and final) axiom will exclude versions of N that are 

―too large‖ from occurring. Before we begin, we need a definition that is inspired by our 

previous chapter on induction. A set V is called inductive if the following two conditions 

are satisfied: 

· 0 ∈ V 

· If x ∈ V , then S(x) ∈ V . 

Of course, the name comes from the fact that the first condition is similar to our ―base 

case‖ from induction, and the second condition is analogous to the induction step. The 
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last axiom, many times called the Axiom of Induction says that if V is an inductive set, 

then V contains the set of natural numbers. 

Axiom 9. If V is an inductive set, then N ⊂ V . 

As stated above, the first 8 axioms ensure that {0, 1, 2, 3, . . .} ⊂ N. Furthermore, notice 

that the set {0, 1, 2, 3, . . .} is an inductive set! Thus, by Axiom 9, it must be true that N 

⊂ {0, 1, 2, 3, . . .}. Thus, we finally have the set equality that we were after: 

N = {0, 1, 2, 3, . . .}. 

 

Mathematical Induction 

Mathematical Induction (MI) is an extremely important tool in Mathematics. 

First of all you should never confuse MI with Inductive Attitude in Science. The latter is 

just a process of establishing general principles from particular cases. 

MI is a way of proving math statements for all integers (perhaps excluding a finite 

number) [1] says: 

Statements proved by math induction all depend on an integer, say, n. For example, 

(1) 1 + 3 + 5 + ... + (2n - 1) = n2 

(2) If x1, x2, ..., xn > 0 then (x1 + x2 + ... + xn)/n ≥ (x1·x2·...·xn)
1/n 

etc. n here is an "arbitrary" integer. 

It's convenient to talk about a statement P(n). For (1), P(1) says that 1 = 12 which is 

incidentally true. P(2) says that 1 + 3 = 22, P(3) means that 1 + 3 + 5 = 32. And so on. 

These particular cases are obtained by substituting specific values 1, 2, 3 for n into 

P(n). 

Assume you want to prove that for some statement P, P(n) is true for all n starting with n 

= 1. The Principle (or Axiom) of Math Induction states that, to this end, one should 

accomplish just two steps: 

1. Prove that P(1) is true. 
2. Assume that P(k) is true for some k. Derive from here that P(k+1) is also true. 

The idea of MI is that a finite number of steps may be needed to prove an infinite 

number of statements P(1), P(2), P(3), .... 

Let's prove (1). We already saw that P(1) is true. Assume that, for an arbitrary k, P(k) is 

also true, i.e. 1 + 3 + ... + (2k-1) = k2. Let's derive P(k+1) from this assumption. We have 

https://www.cut-the-knot.org/do_you_know/mul_num.shtml#induction
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1 + 3 + ... + (2k-1) + (2k+1) = [1 + 3 + ... + (2k-1)] + (2k+1) 

  = k2 + (2k+1) 

  = (k+1)2 

Which exactly means that P(k+1) holds. (For 2k+1 = 2(k+1)-1.) Therefore, P(n) is true 

for all n starting with 1. 

Intuitively, the inductive (second) step allows one to say, look P(1) is true and implies 

P(2). Therefore P(2) is true. But P(2) implies P(3). Therefore P(3) is true which implies 

P(4) and so on. Math induction is just a shortcut that collapses an infinite number of 

such steps into the two above. 

In Science, inductive attitude would be to check a few first statements, say, P(1), P(2), 

P(3), P(4), and then assert that P(n) holds for all n. The inductive step "P(k) implies P(k 

+ 1)" is missing. Needless to say nothing can be proved this way. 

Remark 

1. Often it is impractical to start with n = 1. MI applies with any starting integer n0. 
The result is then proved for all n from n0 on. 

2. Sometimes, instead of 2., one assumes 2': 
 

Assume that P(m) is true for all m < (k + 1). 

Derive from here that P(k+1) is also true. The two approaches are equivalent, 

because one may consider statement Q: Q(n) = P(1) and P(2) and ... and P(n), 

so that Q(n) is true iff P(1), P(2), ..., P(n) are all true. 

This variant goes by the name of Complete Induction or Strong Induction. 

In problem solving, mathematical induction is not only a means of proving an existing 

formula, but also a powerful methodology for finding such formulas in the first place. 

When used in this manner MI shows to be an outgrowth of (scientific) inductive 

reasoning - making conjectures on the basis of a finite set of observations. 

 

Discrete Numeric Functions and Generating functions 

Generating function is a method to solve the recurrence relations. 

Let us consider, the sequence a0, a1, a2....ar of real numbers. For some interval of real 
numbers containing zero values at t is given, the function G(t) is defined by the series 
            G(t)= a0, a1t+a2 t

2+⋯+ar tr+............equation (i) 
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This function G(t) is called the generating function of the sequence ar. 

Now, for the constant sequence 1, 1, 1, 1.....the generating function is 

 

It can be expressed as 

            G(t) =(1-t)-1=1+t+t2 +t3+t4+⋯[By binomial expansion] 

Comparing, this with equation (i), we get 

            a0=1,a1=1,a2=1 and so on. 

For, the constant sequence 1,2,3,4,5,..the generating function is 

            G(t) = because it can be expressed as 
            G(t) =(1-t)-2=1+2t+3t2 +4t3+⋯+(r+1) tr 

Comparing, this with equation (i), we get 
a0=1,a1=2,a2=3,a3=4 and so on. 

The generating function of Zr,(Z≠0 and Z is a constant)is given by 

            G(t)= 1+Zt+Z2 t2+Z3 t3+⋯+Zr tr 

            G(t)=        [Assume |Zt|<1] 

So,       G(t)=  generates Zr,Z≠0 

Also,If a(1)
r has the generating function G1(t) and a(2)

r has the generating function G2(t), 
then λ1 a

(1)
r+λ2 a

(2)
r has the generating function λ1 G1(t)+ λ2 G2(t). Here λ1 and λ2 are 

constants. 

Application Areas: 

Generating functions can be used for the following purposes - 

o For solving recurrence relations 

o For proving some of the combinatorial identities 

o For finding asymptotic formulae for terms of sequences 

Example: Solve the recurrence relation ar+2-3ar+1+2ar=0 

By the method of generating functions with the initial conditions a0=2 and a1=3. 
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Solution: Let us assume that 

 

Multiply equation (i) by tr and summing from r = 0 to ∞, we have 

 

(a2+a3 t+a4 t
2+⋯)-3(a1+a2 t+a3 t

2+⋯)+2(a0+a1 t+a2 t
2+⋯)=0 

     [∴ G(t)=a0+a1 t+a2 t
2+⋯] 

 +2G(t)=0............equation (ii) 

Now, put a0=2 and a1=3 in equation (ii) and solving, we get 

 

Put t=1 on both sides of equation (iii) to find A. Hence 
            -1=- A       ∴ A = 1 

Put t=  on both sides of equation (iii) to find B. Hence 

            =  B       ∴ B = 1 

Thus G (t) = .Hence,ar=1+2r. 

 

Simple Recurrence relation with constant coefficients 

A Recurrence Relations is called linear if its degree is one. 

The general form of linear recurrence relation with constant coefficient is 

          C0 yn+r+C1 yn+r-1+C2 yn+r-2+⋯+Cr yn=R (n) 

Where C0,C1,C2......Cn are constant and R (n) is same function of independent variable n. 

A solution of a recurrence relation in any function which satisfies the given equation. 
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Linear Homogeneous Recurrence Relations with Constant 
Coefficients: 

The equation is said to be linear homogeneous difference equation if and only if R (n) = 
0 and it will be of order n. 

The equation is said to be linear non-homogeneous difference equation if R (n) ≠ 0. 

Example1:  

The equation ar+3+6ar+2+12ar+1+8ar=0 is a linear non-homogeneous equation of order 3. 

Example2:  

The equation ar+2-4ar+1+4ar= 3r + 2r is a linear non-homogeneous equation of order 2. 

A linear homogeneous difference equation with constant coefficients is given by 

          C0 yn+C1 yn-1+C2 yn-2+⋯......+Cr yn-r=0 ....... equation (i) 

Where C0,C1,C2.....Cn are constants. 

The solution of the equation (i) is of the form , where ∝1 is the characteristics root 
and A is constant. 

Substitute the values of A ∝K for yn in equation (1), we have 

          C0 A∝
K+C1 A∝

K-1+C2 A∝
K-2+⋯....+Cr A∝

K-r=0.......equation (ii) 

After simplifying equation (ii), we have 

          C0 ∝
r+C1 ∝

r-1+C2 ∝
r-2+⋯Cr=0..........equation (iii) 

The equation (iii) is called the characteristics equation of the difference equation. 

If ∝1 is one of the roots of the characteristics equation, then is a homogeneous 
solution to the difference equation. 

To find the solution of the linear homogeneous difference equations, we have the four 
cases that are discussed as follows: 
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Case1:  

If the characteristic equation has n distinct real roots∝1, ∝2, ∝3,.......∝n. 

Thus, are all solutions of equation (i). 

Also, we have are all solutions of equation (i). The sums of solutions are also 
solutions. 

Hence, the homogeneous solutions of the difference equation are 

 

Case2:  

If the characteristics equation has repeated real roots. 

If ∝1=∝2, then (A1+A2 K) is also a solution. 

If ∝1=∝2=∝3 then (A1+A2 K+A3 K
2) is also a solution. 

Similarly, if root ∝1 is repeated n times, then. 

          (A1+A2 K+A3 K
2+......+An Kn-1)  

The solution to the homogeneous equation. 

Case3:  

If the characteristics equation has one imaginary root. 

If α+iβ is the root of the characteristics equation, then α-iβ is also the root, where α and 
β are real. 

Thus, (α+iβ)K and (α-iβ)K are solutions of the equations. This implies 

          (α+iβ)K A1+α-iβ)K A2 

Is also a solution to the characteristics equation, where A1 and A2 are constants which 
are to be determined. 
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Case4:  

If the characteristics equation has repeated imaginary roots. 

When the characteristics equation has repeated imaginary roots, 

          (C1+C2 k) (α+iβ)K +(C3+C4 K)(α-iβ)K 

Is the solution to the homogeneous equation. 

Example1:  

Solve the difference equation ar-3ar-1+2ar-2=0. 

Solution:  

The characteristics equation is given by 

          s2-3s+2=0 or (s-1)(s-2)=0 

          ⇒ s = 1, 2 

Therefore, the homogeneous solution of the equation is given by 

          ar=C1
r+C2.2r. 

Example2:  

Solve the difference equation 9yK+2-6yK+1+yK=0. 

Solution:  

The characteristics equation is 

          9s2-6s+1=0 or (3s-1)2=0 

          ⇒ s =  and  

Therefore, the homogeneous solution of the equation is given by 

yK=(C1+C2 k).  

Example3:  

Solve the difference equation yK-yK-1-yK-2=0. 

Solution:  
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The characteristics equation is s2-s-1=0 

s=  

Therefore, the homogeneous solution of the equation is 

 

Example4:  

Solve the difference equation yK+4+4yK+3+8yK+2+8yK+1+4yK=0. 

Solution:  

The characteristics equation is s4+4s3+8s2+8s+4=0 
          (s2+2s+2) (s2+2s+2)=0 
          s = -1±i,-1±i 

Therefore, the homogeneous solution of the equation is given by 

          yK=(C1+C2 K)(-1+i)K+(C3 +C4 K)(-1-i)K 

 

Asymptotic Behavior of functions 

Consider two types of extreme (or asymptotic) registrations: 

 large translations -- such that the volume overlap is minimal. 
 large scale disparity -- such that a small portion of the floating volume is 

stretched to cover the entire reference volume. 

Both of these cases represent poor registrations and it is therefore important that the 
cost values associated with them are high. If this is not the case then the global 
minimum may be associated with these transformations rather than the desired one, 
violating the first assumption outlined in section 2.5. Furthermore, limiting the domain to 
exclude these transformations will only eliminate the problem if the cost at the domain 
boundary is guaranteed to be larger than the global minimum, which is generally difficult 
or impossible to do as the value at the global minimum is unknown. 

In examining the asymptotic behaviour it is important to define what the boundary 
conditions are. That is, what is done for points in space which do not lie in one or other 
of the volume domains. One option is to (conceptually) pad the volumes with zeros to 
give them infinite domain. However, this creates artificial intensity boundaries when the 
FOV only includes part of the head (for example, when the top few mm of the 

https://www.fmrib.ox.ac.uk/datasets/techrep/tr00mj2/tr00mj2/node7.html#mathsec:assumptions
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head/brain are not included the intensity suddenly drops from that of brain matter to 
zero) -- which is relatively common. These artificial boundaries would then bias the 
registration, which is undesirable. Therefore, a better alternative is to only calculate the 
cost function for the region where the volumes overlap. This usually requires some extra 
calculations in practice, as the normalisation now depends on the overlap volume, 
which depends on the transformation, but the resulting registration is, in theory, 
unbiased. 

The cost functions that will be compared here are: the Woods function [Woods et al., 
1993], Correlation Ratio [Roche et al., 1998], Joint Entropy [Studholme et al., 
1995,Collignon et al., 1995], Mutual Information [Viola and Wells, 1997,Maes et al., 
1997], and Normalised Mutual Information [Studholme et al., 1999,Maes, 1998]. 

Denoting the two images by X (typically Ir) and Y (typically ), the 
respective cost functions1 are defined as: 

CW = 

 

(7) 

CCR = 

 

(8) 

CJE = H(X,Y) (9) 

CMI = H(X,Y) - H(X) - H(Y) (10) 

CNMI = 

 

(11) 

 
 

Here the quantities X and Y represent the images as the set of intensities evaluated at 
the discrete, valid grid points. That is,  where G represents the discrete grid and  the 
continuous, valid domain (that is, the FOV). Also: 

  is the mean of set A 
  is the variance of the set A 
 Yi is the ith iso-set defined by X as  

 ni = Card ( Yi ) (number of elements in the set Yi) such that  
 is the standard entropy definition where  represents the probability of the (i,j) joint 

histogram bin, and similarly for the marginals, H(X) and H(Y). 

These definition require the specification of a partition of the intensities: 
. This partition is used to define the various histograms and iso-sets required for the 
calculation of the cost functions. In particular, a discrete bin (or iso-set) number is 
calculated for each voxel using the intensity at that voxel. For example, at location q in 

https://www.fmrib.ox.ac.uk/datasets/techrep/tr00mj2/tr00mj2/node30.html#Woods93
https://www.fmrib.ox.ac.uk/datasets/techrep/tr00mj2/tr00mj2/node30.html#Woods93
https://www.fmrib.ox.ac.uk/datasets/techrep/tr00mj2/tr00mj2/node30.html#Roche98
https://www.fmrib.ox.ac.uk/datasets/techrep/tr00mj2/tr00mj2/node30.html#Studholme95
https://www.fmrib.ox.ac.uk/datasets/techrep/tr00mj2/tr00mj2/node30.html#Studholme95
https://www.fmrib.ox.ac.uk/datasets/techrep/tr00mj2/tr00mj2/node30.html#Collignon95
https://www.fmrib.ox.ac.uk/datasets/techrep/tr00mj2/tr00mj2/node30.html#Viola97
https://www.fmrib.ox.ac.uk/datasets/techrep/tr00mj2/tr00mj2/node30.html#Maes97
https://www.fmrib.ox.ac.uk/datasets/techrep/tr00mj2/tr00mj2/node30.html#Maes97
https://www.fmrib.ox.ac.uk/datasets/techrep/tr00mj2/tr00mj2/node30.html#Studholme99
https://www.fmrib.ox.ac.uk/datasets/techrep/tr00mj2/tr00mj2/node30.html#Maes98
https://www.fmrib.ox.ac.uk/datasets/techrep/tr00mj2/tr00mj2/footnode.html#foot541
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image X the intensity is X(q) and the bin number is k if Ik < X(q) < Ik+1. Then, given this 
bin number, iso-sets or the joint histogram are easily determined. 

That is, the kth iso-set, Yk, is the set of Y intensities where the corresponding voxel 
in X has a bin number k -- the intensity X(q) is between Ik and Ik+1. The joint histogram is 
composed of a number of elements, where the element b(i,j)represents the number of 
voxels where the intensity of X is in the ith bin, (Ii,Ii+1), and the intensity of Y for the 
same (corresponding) voxel is in the jth bin, (Ij,Ij+1). The probability associated with this 
element pij is then simply the value of the element divided by the sum of all the 
elements. 

 

Algebraic Structures:  

Properties 

A non-empty set G equipped with one or more binary operations is said to be 
an algebraic structure. Suppose * is a binary operation on G. Then (G, *) is an algebraic 
structure. (N,*), (1, +), (1, -) are all the algebraic structure. Here, (R, +, .) is an algebraic 
structure equipped with two operations. 

Binary operation on a set 

Suppose G is a non-empty set. The G X G = {(a,b) : a E G, b E G)}. If f : G X G → 
G then f is called a binary operation on a set G. The image of the ordered 
pair (a,b) under the function f is denoted by afb. 

A binary operation on asset G is sometimes also said to be the binary composition in 
the set G. If * is a binary composition in G then, a * b E G, a, b E G. Therefore g is 
closed with respect to the composition denoted by *. 

Example: 

An addition is a binary operation on the set N of natural number. The sum of two natural 
number is also a natural number. Therefore, N is a natural number with respect to 
addition i.e. a+b. 

Subtraction is not a binary operation on N. We have 4 – 7 = 3 not belong 
to N whereas 4 E N. thus, N is not closed with respect to subtraction, but subtraction is 
a binary operation on the set of an integer. 

Properties of an algebraic structure 

By a property of an algebraic structure, we mean a property possessed by any of its 
operations. Important properties of an algebraic system are: 
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1. Associative and commutative laws 

An operation * on a set is said to be associative or to satisfy the associative law if, for 
any elements a, b , c in S we have (a * b) * c = a * (b * c ) 

An operation * on a set S is said to be commutative or satisfy the commutative law if, a * 
b = b * a for any element a, b in S. 

2. Identity element and inverse 

Consider an operation * on a set S. An element e in S is called an identity elements 
for * if for any elements a in S - a * e = e * a = a 

Generally, an element e is called a left identity or a right identity according to as e 
*a or a * e = a where a is any elements in S. 

Suppose an operation * on a set S does have an identity element e. The inverse of an 
element in S is an element b such that: a * b = b * a = e 

3. Cancellation laws 

An operation * on a set S is a said to satisfy the left cancellation law if, a * b = a * c 
implies b = c and is said to satisfy the right cancellation law if, b * a = c * a implies b = c 

 

Semi group 

Let us consider, an algebraic system (A, *), where * is a binary operation on A. Then, 
the system (A, *) is said to be semi-group if it satisfies the following properties: 

1. The operation * is a closed operation on set A. 

2. The operation * is an associative operation. 

Example: Consider an algebraic system (A, *), where A = {1, 3, 5, 7, 9....}, the set of 
positive odd integers and * is a binary operation means multiplication. Determine 
whether (A, *) is a semi-group. 

Solution: Closure Property: The operation * is a closed operation because 
multiplication of two +ve odd integers is a +ve odd number. 

Associative Property: The operation * is an associative operation on set A. Since 
every a, b, c ∈ A, we have 

                (a * b) * c = a * (b * c) 
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Hence, the algebraic system (A, *), is a semigroup. 

Subsemigroup: 

Consider a semigroup (A, *) and let B ⊆ A. Then the system (B, *) is called a 
subsemigroup if the set B is closed under the operation *. 

Example: Consider a semigroup (N, +), where N is the set of all natural numbers and + 
is an addition operation. The algebraic system (E, +) is a subsemigroup of (N, +), where 
E is a set of +ve even integers. 

Free Semigroup: 

Consider a non empty set A = {a1,a2,.....an}. 

Now, A* is the set of all finite sequences of elements of A, i.e., A* consist of all words 
that can be formed from the alphabet of A. 

If α,β,and,γ are any elements of A*, then α,(β. γ)=( α.β).γ. 

Here ° is a concatenation operation, which is an associative operation as shown above. 

Thus (A*,°) is a semigroup. This semigroup (A*,°) is called the free semigroup 
generated by set A. 

Product of Semigroup: 

Theorem: If (S1,*)and (S2,*) are semigroups, then (S1 x S2*) is a semigroup, where * 
defined by (s1',s2')*( s1'',s2'')=(s1'*s1'',s2'*s2'' ). 

Proof: The semigroup S1 x S2 is closed under the operation *. 

Associativity of *.Let a, b, c ∈ S1 x S2 

So,     a * (b * c) = (a1,a2 )*((b1,b2)*(c1,c2)) 
               = (a1,a2 )*(b1 *1 c1,b2 *2 c2) 
                = (a1 *1 (b1 *1 c1 ),a2 *2 (b2 *2 c2) 
                = ((a1 *1 b1) *1*1,( a2 *2 b2) *2 c2) 
               = (a1 *1 b1,a2 *2 b2)*( c1,c2) 
                = ((a1,a2)*( b1,b2))*( c1,c2) 
                = (a * b) * c. 

Since * is closed and associative. Hence, S1 x S2 is a semigroup. 

Monoid: 
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Let us consider an algebraic system (A, o), where o is a binary operation on A. Then the 
system (A, o) is said to be a monoid if it satisfies the following properties: 

1. The operation o is a closed operation on set A. 

2. The operation o is an associative operation. 

3. There exists an identity element, i.e., the operation o. 

Example: Consider an algebraic system (N, +), where the set N = {0, 1, 2, 3, 4...}.The 
set of natural numbers and + is an addition operation. Determine whether (N, +) is a 
monoid. 

Solution: (a) Closure Property: The operation + is closed since the sum of two natural 
numbers. 

(b)Associative Property: The operation + is an associative property since we have 
(a+b)+c=a+(b+c) ∀ a, b, c ∈ N. 

(c)Identity: There exists an identity element in set N the operation +. The element 0 is 
an identity element, i.e., the operation +. Since the operation + is a closed, associative 
and there exists an identity. Hence, the algebraic system (N, +) is a monoid. 

SubMonoid: 

Let us consider a monoid (M, o), also let S ⊆M. Then (S, o) is called a submonoid of (M, 
o), if and only if it satisfies the following properties: 

1. S is closed under the operation o. 

2. There exists an identity element e ∈ T. 

Example: Let us consider, a monoid (M, *), where * s a binary operation and M is a set 
of all integers. Then (M1, *) is a submonoid of (M, *) where M1 is defined as M1={ai│i is 
from 0 to n,a positive integer,and a∈M}. 

Monoid 

 A group is a monoid with an inverse element. The inverse element (denoted by I) 

of a set S is an element such that (a 0 I) = (I 0 a) = a, for each element a ∈ S. 
 So, a group holds four properties simultaneously – 

1. Closure, 
2. Associative, 
3. Identity element, 
4. inverse element. 
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 The order of a group G is the number of elements in G and the order of an 
element in a group is the least positive integer n such that an is the identity 
element of that group G. 

Examples 

 The set of N × N non-singular matrices form a group under matrix multiplication 
operation. 

 The product of two N × N non-singular matrices is also an N × N non-singular 
matrix which holds closure property. 

 Matrix multiplication itself is associative. Hence, associative property holds. 
 The set of N × N non-singular matrices contains the identity matrix holding the 

identity element property. 
 As all the matrices are non-singular they all have inverse elements which are 

also non-singular matrices. Hence, inverse property also holds. 

Monoid: 

If a semigroup {M, * } has an identity element with respect to the operation * , then {M, * 
} is called a monoid. 

viz., if for any a,b,c∈Ma,b,c∈M 
(a∗b)∗c=a∗(b∗c)(a∗b)∗c=a∗(b∗c) 

and if there exists an element e∈Me∈M such that for 
any a∈M,e∗a=a∗e=aa∈M,e∗a=a∗e=a, then the algebraic system {M, * } is called a 
monoid. 
For example, if N is the set of natural numbers, then {N,+} and {N,X} are monoids with 
the identity elements 0 and 1 respectively. 

The semigroups {E,+} and {E,X} are not monoids. 

Semigroup: 

If S is a nonempty set and * be a binary operation on S, then the algebraic system {S, * 
} is called a semigroup , if the operation * is associative. 

viz., if for any a,b,c∈Sa,b,c∈S, 
(a∗b)∗c=a∗(b∗c)(a∗b)∗c=a∗(b∗c) 

Since the characteristic property of a binary operation on S is the closure property, it is 
not necessary to mention it explicity when algebraic systems are defined. 

For example, if E is the set of positive even numbers, then {E, + } and {E, X} are 
semigroups. 
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Abelian Group 

We no longer assume that the groups we study are finite. 

With abelian groups, additive notation is often used instead of multiplicative notation. In 
other words the identity is represented by 00, and a+ba+b represents the element 
obtained from applying the group operation to aa and bb. 

A group GG is the direct sum of two subgroups U,VU,V if every element x∈Gx∈G can 
be written in the form x=u+vx=u+v where u∈U,v∈Vu∈U,v∈V, 
and u+v=0u+v=0 implies u=v=0u=v=0. We write G=U⊕VG=U⊕V. 

Note that U,VU,V cannot have a nonzero element ww in common, 
otherwise w+(−w)=0w+(−w)=0 is a nontrivial decomposition of zero. Also u,vu,v are 
uniquely determined by xx for 
if u1+v1=u2+v2u1+v1=u2+v2 implies u1−u2=v2−v1∈U∩Vu1−u2=v2−v1∈U∩V. 

More generally we have G=U1⊕...⊕UrG=U1⊕...⊕Ur, if every x∈Gx∈G can be written 
in the form x=u1+...+urx=u1+...+ur and also 
if 0=u1+...+ur0=u1+...+ur implies 0=u1=...=ur0=u1=...=ur. Clearly if GG is finite we 
have |G|=|U1|...|Ur||G|=|U1|...|Ur|. 

An abelian group AA is a free abelian group of rank rr if there 

exist u1,...,ur∈Au1,...,ur∈A such 
that A=⟨u1,...,.ur⟩A=⟨u1,...,.ur⟩ and a1u1+...+arura1u1+...+arur implies a1=...=ar=0a1=...

=ar=0. Alternatively we may require every x∈Ax∈A can be uniquely written in the 
form x=a1u1+...+arurx=a1u1+...+arur. The set {u1,...,ur}{u1,...,ur} is a set of free 
generators of AA. The trivial group is viewed as a free abelian group of rank zero, and 
viewed as been generated by the empty set. 

Generators need not be unique. However it is easy to see that two sets of free 
generators are related by a unimodular (determinant of absolute value one) matrix 
transformation. 

Theorem: [Dedekind] Let FF be a free abelian group of rank rr and let GG be a nonzero 
subgroup of FF. Then GG is a free abelian group of rank ss with s≤rs≤r. 
Furthermore, FF has a set of free generators {u1,...,ur}{u1,...,ur} such that GG is 
generated by 

v1=a11u1+a12u2+...+a1rurv2=a22u2+...+a2rur⋮vs=assus+...+asrurv1=a11u1+a12u2+...
+a1rurv2=a22u2+...+a2rur⋮vs=assus+...+asrur 
for some aijaij with a11,a22,...,assa11,a22,...,ass positive. 

Proof: Let {u1,...,ur}{u1,...,ur} be free generators for FF. Then take any nonzero 
element b=b1u1+...+brurb=b1u1+...+brur of GG. After permuting the uiui's if necessary, 
assume b1≠0b1≠0. Then since GG is closed under inverses, we may take b1>0b1>0. 
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Enumerate all elements x1u1+...+xrurx1u1+...+xrur of GG and consider the set of 
possible positive integer values for x1x1. We know this set is nonempty since b1b1 is a 
possible value. Then call the smallest integer in this set a11a11 and take any 

element v1=a11u1+...+a1rur∈Gv1=a11u1+...+a1rur∈G for which this minimum is 
attained. 

Then every element x1u1+...+xrur∈Gx1u1+...+xrur∈G must satisfy a11|x1a11|x1, since 
we have x1=a11q+bx1=a11q+b for integers q,bq,b with 0≤b<a110≤b<a11 (which 
implies x1=bx1=b for some element of GG), and we have chosen a11a11 to be minimal. 

Thus for all x∈Gx∈G, for some integer qq we 
have x−qv1=b2u2+...+brurx−qv1=b2u2+...+brur for some b2,...,brb2,...,br. If r=1r=1 then 
we are done since we have F=⟨u1⟩F=⟨u1⟩, G=⟨a11u1⟩G=⟨a11u1⟩. 

We use induction. Suppose r>1r>1. 

Let F1=⟨u2,...,ur⟩,G1=G∩G1F1=⟨u2,...,ur⟩,G1=G∩G1. Then G1G1 is a subgroup 
of F1F1 and by inductive hypothesis G1=⟨v2,..,vs⟩G1=⟨v2,..,vs⟩ where s≤rs≤r and 

v2=a22u2+a23u2+...+a2rurv3=a33u3+...+a3rur⋮vs=assus+...+asrurv2=a22u2+a23u2+...
+a2rurv3=a33u3+...+a3rur⋮vs=assus+...+asrur 
with a22,...,assa22,...,ass positive. We claim v1,...,vsv1,...,vs generate GG. We have 

already seen that for any x∈Gx∈G, there exists some integer qq such 
that x−qv1∈F1x−qv1∈F1. Then x−qv1∈G1x−qv1∈G1, hence G=⟨v1,...,vs⟩G=⟨v1,...,vs⟩. 

It remains to show that v1,...,vsv1,...,vs are independent. Suppose not, that is, there 
exists a nontrivial relation c1v1+...+csvs=0c1v1+...+csvs=0. We must 
have c1≠0c1≠0 because by induction we cannot have a nontrivial relation 
between v2,...,vsv2,...,vs. Expressing the vivi's in terms of the uiui's, we arrive at a 
nontrivial relation between the uiui's since the coeffecient of u1u1 is c1a11≠0c1a11≠0, a 
contradiction since the uiui's are independent.∎ 

Now let F=⟨u1,...,ur⟩F=⟨u1,...,ur⟩ be an abelian free group of rank rr. Recall any set of 
generators of FF is related to the uiui's via a unimodular matrix transformation, hence 
such a generator b1u1+...+brurb1u1+...+brur must have gcd(b1,...,br)=1gcd(b1,...,br)=1. 
The converse is also true: 

Lemma: Let F=⟨u1,...,ur⟩F=⟨u1,...,ur⟩. 
Let v=b1u1+...+brurv=b1u1+...+brur with gcd(b1,...,br)=1gcd(b1,...,br)=1. Then there 
exist v2,...,vr∈Fv2,...,vr∈F with F=⟨v,v2,...,vr⟩F=⟨v,v2,...,vr⟩. 

Proof: Set s=|b1|+...+|br|s=|b1|+...+|br|. If s=1s=1 then the result is trivial, since we 
have v=±uiv=±ui for some ii. We shall induct on ss. 

If s>1s>1 then at least two of the bibi's are nonzero, and without loss of generality 
assume b1≥b2>0b1≥b2>0. Then 
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set u′1=u1,u′2=u1+u2,u′j=uju1′=u1,u2′=u1+u2,uj′=uj for j≥3j≥3. 
Clearly F=⟨u′1,...,u′r⟩F=⟨u1′,...,ur′⟩, and we have 

v=(b1−b2)u′1+b2u′2+...+bru′rv=(b1−b2)u1′+b2u2′+...+brur′ 
Furthermore gcd(b1−b2,b2,...,br)=1gcd(b1−b2,b2,...,br)=1 and 

|b1−b2|+|b2|+...+|br|<s|b1−b2|+|b2|+...+|br|<s 

so by inductive hypothesis the result follows.∎ 

Theorem: Let FF be a finitely generated free abelian group of rank rr and let GG be a 
subgroup of FF of rank ss with 0<s≤r0<s≤r. Then there exist generators 
for FF v1,...,vrv1,...,vr such that 

G=⟨h1v1,...,hsvs⟩G=⟨h1v1,...,hsvs⟩ 
where h1,...,hsh1,...,hs are positive integers 
satisfying hi|hi+1hi|hi+1 for i=1,...,s−1i=1,...,s−1. 

Proof: Let u1,...,uru1,...,ur be a set of generators for FF. Take any x∈Gx∈G. 
Write x=x1u1+...+xrurx=x1u1+...+xrur. Define δ(x)=gcd(x1,...,xr)δ(x)=gcd(x1,...,xr). We 
claim that δ(x)δ(x) is independent of the choice of generators of FF. 

This is easily seen because if u′1,...,u′ru1′,...,ur′ are another set of generators, we can 
write the uiui's in terms of the u′iui′'s showing 
that gcd(x1,...xr)|gcd(x′1,...,x′r)gcd(x1,...xr)|gcd(x1′,...,xr′) where x=x′1u′1+...+x′ru′rx=x1′u
1′+...+xr′ur′. By symmetry we must have equality. 

Now take any nonzero y1∈Gy1∈G such that δ(y1)δ(y1) is minimal. 
Set h1=δ(y1)h1=δ(y1). Then y1y1 can be 
written y1=h1(z1u1+...+zrur)y1=h1(z1u1+...+zrur) for some 
integers zizi satisfying gcd(z1,...,zr)=1gcd(z1,...,zr)=1. By the lemma, there exist 
elements v′2,...v′rv2′,...vr′ which together with v1v1 generate FF. 

Hence an element y∈Gy∈G can be written 

y=w1v1+w′2v′2+...+w′rv′ry=w1v1+w2′v2′+...+wr′vr′ 
Now h1h1 must divide w1w1, since we have w1=qh1+mw1=qh1+m for 
some 0le0<h10le0<h1 and h1h1 is minimal. (Consider δ(y−qy1)δ(y−qy1).) Thus 

y−qy1=t2v′2+...+t2v′ry−qy1=t2v2′+...+t2vr′ 
If r=1r=1 we are done, for we have s=1,F=⟨ v1⟩ ,G=⟨ h1v1⟩ s=1,F=⟨ v1⟩ ,G=⟨ h1v1⟩ . 
We induct on rr, so suppose r>1r>1. 

Let F1=⟨ v1,v′2,...,v′r⟩ F1=⟨ v1,v2′,...,vr′⟩  and G1=F1∩GG1=F1∩G. Then G1G1 is a 
subgroup of F1F1 whose rank we shall denote by t−1t−1 where 0<t≤r0<t≤r. 
If t=1t=1 then G1=0G1=0 and since G=⟨ hv1⟩ G=⟨ hv1⟩  we are done. 
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Otherwise t<1t<1, and by inductive hypothesis there exist free 
generators v2,...,vrv2,...,vr of F1F1 such that 

G1=⟨ h2v2,...,htvt⟩ G1=⟨ h2v2,...,htvt⟩  
where hi|hi+1hi|hi+1 for i=2,..,t−1i=2,..,t−1. Now F=⟨ v1,...,vr⟩ F=⟨ v1,...,vr⟩  and 
any y∈Gy∈G can be written y=q1h1v1+g1y=q1h1v1+g1 for some g1∈G1g1∈G1. 
Thus h1v1,...,htvth1v1,...,htvt generate GG. They must also be independent, becuause 
a nontrival relation between them imply a nontrivial relation between the 
generators v1,...,vrv1,...,vr of FF. 

Thus G=⟨ h1v1,...,htvt⟩ G=⟨ h1v1,...,htvt⟩  and t=st=s. It remains to show h1|h2h1|h2. 
Write h2=ah1+bh2=ah1+b where 0≤b<h10≤b<h1. Then 
consider y0=h1v1+h2v2∈Gy0=h1v1+h2v2∈G. We 
have δ(y0)=gcd(h1,h2)=gcd(h1,b)δ(y0)=gcd(h1,h2)=gcd(h1,b). By minimality of h1h1 we 
must have b=0b=0. 

 

properties of group 

 The identity element of a group is unique. 

 

  The inverse of each element of a group is unique, i.e. in a group GG with operation ∗∗ for 

every a∈Ga∈G, there is only element a–1a–1 such thata–1∗a=a∗a–1=ea–1∗a=a∗a–

1=e, ee being the identity. 

  The inverse aa ofa–1a–1, then the inverse of a–1a–1 is aa, i.e. (a–1)–1=a(a–1)–1=a. 

 

  The inverse of the product of two elements of a group GG is the product of the inverse taken 

in the inverse order, i.e. (a∗b)–1=b–1∗a–1 ∀a,b∈G(a∗b)–1=b–1∗a–1 ∀a,b∈G. 

 

  Cancellation laws holds in a group, i.e. if a,b,ca,b,c are any elements of a group GG, 

then a∗b=a∗c⇒b=ca∗b=a∗c⇒b=c (left cancellation 

law), b∗a=c∗a⇒b=cb∗a=c∗a⇒b=c (right cancellation law). 

 

  If  GG is a group with binary operation ∗∗ and if aa and bb are any elements of GG, then the 

linear equations a∗x=ba∗x=b and y∗a=by∗a=b have unique solutions in GG. 

 

  The left inverse of an element is also its right inverse, i.e. a–1∗a=e=a∗a–1a–1∗a=e=a∗a–1. 
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Subgroup 

If a non-void subset H of a group G is itself a group under the operation of G, we say H 
is a subgroup of G. 

Theorem: - A subset H of a group G is a subgroup of G if: 

o the identity element a∈ H. 

o H is closed under the operation of G i.e. if a, b∈ H, then a, b∈ H and 

o H is closed under inverses, that is if a∈ H then a-1∈ H. 

Cyclic Subgroup:- 

A Subgroup K of a group G is said to be cyclic subgroup if there exists an element x∈ G 
such that every element of K can be written in the form xn for some n ∈Z. 

The element x is called generator of K and we write K= <x> 

Cyclic Group:- 

In the case when G=, we say G is cyclic and x is a generator of G. That is, a group G is 
said to be cyclic if there is an element x∈ G such that every element of G can be written 
in the form xn for the some n∈ Z. 

Example: The group G= {1, -1, i,-i} under usual multiplication is a finite cyclic group with 
i as generator, since i1=i,i2=-1,i3=-i and i4=1 

Abelian Group: 

Let us consider an algebraic system (G,*), where * is a binary operation on G. Then the 
system (G,*) is said to be an abelian group if it satisfies all the properties of the group 
plus a additional following property: 

(1) The operation * is commutative i.e., 
a * b = b * a ∀ a,b ∈G 

Example: Consider an algebraic system (G, *), where G is the set of all non-zero real 
numbers and * is a binary operation defined by 

 

Show that (G, *) is an abelian group. 

Solution: 
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Closure Property: The set G is closed under the operation *, since a * b =  is a 
real number. Hence, it belongs to G. 

Associative Property: The operation * is associative. Let a,b,c∈G, then we have 

Identity: To find the identity element, let us assume that e is a +ve real number. Then e 
* a = a, where a ∈G. 

Thus, the identity element in G is 4. 

Inverse: let us assume that a ∈G. If a-1∈Q, is an inverse of a, then a * a-1=4 

Thus, the inverse of element a in G is  

Commutative: The operation * on G is commutative. 

Thus, the algebraic system (G, *) is closed, associative, identity element, inverse and 
commutative. Hence, the system (G, *) is an abelian group. 

Product of Groups: 

Theorem: Prove that if (G1,*1)and (G2,*2) are groups, then G = G1 x G2 i.e., (G, *) is a 
group with operation defined by (a1,b1)*( a2,b2 )=(a1,*1,a2, b1 *2 b2). 

Proof: To prove that G1 x G2 is a group, we have to show that G1 x G2 has the 
associativity operator, has an identity and also exists inverse of every element. 

Associativity. Let a, b, c ∈ G1 x G2,then 

So,        a * (b * c) = (a1,a2 )*((b1,b2)*(c1,c2)) 
                = (a1,a2 )*(b1 *1 c1,b2 *2 c2) 
                = (a1 *1 (b1 *1 c1 ),a2 *2 (b2 *2 c2) 
                = ((a1 *1 b1) *1 c1,( a2 *2 b2) *2 c2) 
                = (a1 *1 b1,a2 *2 b2)*( c1,c2) 
                = ((a1,a2)*( b1,b2))*( c1,c2) 
                = (a * b) * c. 

Identity: Let e1 and e2 are identities for G1 and G2 respectively. Then, the identity for 
G1 x G2 is e=(e1,e2 ).Assume same a ∈ G1 x G2 

Then,        a * e = (a1,a2)*( e1,e2) 
                = (a1 *1 e1,a2 *2 e2) 
                = (a1,a2)=a 
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Similarly, we have e * a = a. 

Inverse: To determine the inverse of an element in G1 x G2, we will determine it 
component wise i.e., 
                a-1=(a1,a2)

-1=(a1
-1,a2

-1 ) 

Now to verify that this is the exact inverse, we will compute a * a-1 and a-1*a. 

Now,         a * a-1=(a1,a2 )*(a1
-1,a2

-1 ) 
                = (a1 *1 a1

-1,a2 *2 a2
-1)=( e1,e2)=e 

Similarly, we have a-1*a=e. 

Thus, (G1 x G2,*) is a group. 

In general, if G1,G2,....Gn are groups, then G = G1 x G2 x.....x Gn is also a group. 

Cosets: 

Let H be a subgroup of a group G. A left coset of H in G is a subset of G whose 

elements may be expressed as xH={ xh | h ∈ H } for any x∈ G. The element x is called a 
representation of the coset. Similarly, a right coset of H in G is a subset that may be 

expressed as Hx= {hx | h ∈H } , for any x∈G. Thus complexes xH and Hx are called 
respectively a left coset and a right coset. 

If the group operation is additive (+) then a left coset is denoted as x + H={x+h | h ∈H} 
and a right coset is denoted by H + x = {h+x | h ∈ H} 

 

Cyclic group 

In group theory, a branch of abstract algebra, a cyclic group or monogenous group is 
a group that is generated by a single element.[1] That is, it is a set of invertible elements 
with a single associative binary operation, and it contains an element g such that every 
other element of the group may be obtained by repeatedly applying the group operation 
to g or its inverse. Each element can be written as a power of g in multiplicative 
notation, or as a multiple of g in additive notation. This element g is called a generator of 
the group.[1] 

Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every 
finite cyclic group of order n is isomorphic to the additive group of Z/nZ, the 
integers modulo n. Every cyclic group is an abelian group (meaning that its group 
operation is commutative), and every finitely generated abelian group is a direct 
product of cyclic groups. 

https://en.wikipedia.org/wiki/Group_theory
https://en.wikipedia.org/wiki/Abstract_algebra
https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Generating_set_of_a_group
https://en.wikipedia.org/wiki/Cyclic_group#cite_note-eom-1
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Inverse_element
https://en.wikipedia.org/wiki/Associative
https://en.wikipedia.org/wiki/Binary_operation
https://en.wikipedia.org/wiki/Generating_set_of_a_group
https://en.wikipedia.org/wiki/Cyclic_group#cite_note-eom-1
https://en.wikipedia.org/wiki/Isomorphic
https://en.wikipedia.org/wiki/Additive_group
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Order_(group_theory)
https://en.wikipedia.org/wiki/Quotient_group
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Abelian_group
https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Finitely_generated_group
https://en.wikipedia.org/wiki/Direct_product_of_groups
https://en.wikipedia.org/wiki/Direct_product_of_groups
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Every cyclic group of prime order is a simple group which cannot be broken down into 
smaller groups. In the classification of finite simple groups, one of the three infinite 
classes consists of the cyclic groups of prime order. The cyclic groups of prime order 
are thus among the building blocks from which all groups can be built. 

 

Cosets 

Coset is subset of mathematical group consisting of all the products obtained by 
multiplying fixed element of group by each of elements of given subgroup, either on right 
or on left.mCosets are basic tool in study of groups 
Suppose if A is group, and B is subgroup of A, and is an element of A, then 
 
aB = {ab : b an element of B } is left coset of B in A, 

 
The left coset of B in A is subset of A of form aB for some a(element of A). In aB(left 
coset), a is representative of coset. 
and 

Ba = {ba : b an element of B } is right coset of B in A. 

 
The right coset of B in A is subset of A of form Ba for some a(element of A). In right 
coset Ba, element a is referred to as representative of coset. 
 
The map aB -> (aB)' = Ba' map defines bijection between left cosets and B‗s right cosets, 
so total of left cosets is equivalent to total of right cosets. The common value is called 
index of B in A. 
Left cosets and right cosets are always the same in case of abelian groupings. Notation 
used switches to a+B or B+a if group operation is written additively. 
 
Definition using Equivalence Classes : 
 
Some authors define the left cosets of B in A as equivalence classes given by x ~ y under 
equivalence relationship on A if and only if x'y subset of B is given. Relation can also be 
described by x ~ y if and only if xb = y is described in B for certain b. It can be seen that 
given relation is simply an equivalence relationship and that two concepts are identical. 
Consequently, two left B-in-A cosets are either equivalent or disjoint. So, every element 
of A belongs to single left coset and so left cosets form partition of A. Similar claims for 
right cosets are also valid. 
 
Double Cosets : 
 
If A is group, B and C are subgroups of A, then in A double coset of B and C are sets 
of BaC = {bac: b an element of B, c an element of B }. These are left cosets of C and right 
cosets of B, respectively, if B=1 and C=1. 

https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Simple_group
https://en.wikipedia.org/wiki/Classification_of_finite_simple_groups
https://www.geeksforgeeks.org/subgroup-and-order-of-group-mathematics/
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Notation : 
 
Suppose A is group and B and C.are subgroups of A. 
 
  denotes  set of left cosetsof B in A. 

 
  denotes  set of right cosets of B in A. 

 
  denotes  set of double cosets of B and C in A. 

 
Applications : 
 

1. In computational group theory, cosets are essential. 
 

2. Cosets play key role in the theorem for Lagrange. 
 

3. The Thistlethwaite‘s algorithm used to solve Rubik‘s Cube is highly based on 
cosets. 
 

4. linear error-correction in obtained decoded data is done using cosets. 
 

5. They are used to construct Vitali sets, kind of non-measurable package. 

 

Permutation groups 

In mathematics, a permutation group is a group G whose elements are permutations of 
a given set M and whose group operation is the composition of permutations 
in G (which are thought of as bijective functions from the set M to itself). The group 
of all permutations of a set M is the symmetric group of M, often written as 
Sym(M).[1] The term permutation group thus means a subgroup of the symmetric group. 
If M = {1,2,...,n} then, Sym(M), the symmetric group on n letters is usually denoted by 
Sn. 

 

By Cayley's theorem, every group is isomorphic to some permutation group. 

The way in which the elements of a permutation group permute the elements of the set 
is called its group action. Group actions have applications in the study 
of symmetries, combinatorics and many other branches of mathematics, physics and 
chemistry. 

 

 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Permutation
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Group_operation
https://en.wikipedia.org/wiki/Bijective_function
https://en.wikipedia.org/wiki/Symmetric_group
https://en.wikipedia.org/wiki/Permutation_group#cite_note-1
https://en.wikipedia.org/wiki/Subgroup
https://en.wikipedia.org/wiki/Cayley%27s_theorem
https://en.wikipedia.org/wiki/Isomorphic
https://en.wikipedia.org/wiki/Group_action_(mathematics)
https://en.wikipedia.org/wiki/Symmetry
https://en.wikipedia.org/wiki/Combinatorics
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Physics
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Homomorphism 

Let G be a group. A subgroup H of G is said to be a normal subgroup of G if for all h∈ H 
and x∈ G, x h x-1∈ H 

If x H x-1 = {x h x-1| h ∈ H} then H is normal in G if and only if xH x-1⊆H, ∀ x∈ G 

Statement: If G is an abelian group, then every subgroup H of G is normal in G. 

Proof: Let any h∈ H, x∈ G, then 
x h x-1= x (h x-1) 
x h x-1= (x x-1) h 
x h x-1 = e h 
x h x-1 = h∈ H 

Hence H is normal subgroup of G. 

Group Homomorphism: 

A homomorphism is a mapping f: G→ G' such that f (xy) =f(x) f(y), ∀ x, y ∈ G. The 
mapping f preserves the group operation although the binary operations of the group G 
and G' are different. Above condition is called the homomorphism condition. 

Kernel of Homomorphism: - The Kernel of a homomorphism f from a group G to a 
group G' with identity e' is the set {x∈ G | f(x) =e'} 

The kernel of f is denoted by Ker f. 

If f: G→G' is a homomorphism of G intoG', then the image set of f is the range, denoted 
by f (G), of the map f. Thus 

Im (f) = f (G) = {f(x)∈ G'| x ∈G} 

If f (G) =G', then G' is called a homomorphic image of G. 

Isomorphism: 

Let (G1,*) and (G2,0) be two algebraic system, where * and 0 both are binary operations. 
The systems (G1,*) and (G2,0) are said to be isomorphic if there exists an isomorphic 
mapping f: G1→G2 

When two algebraic systems are isomorphic, the systems are structurally equivalent 
and one can be obtained from another by simply remaining the elements and operation. 

Example: Let (A1,*) and (A2,⊡) be the two algebraic systems as shown in fig. 
Determine whether the two algebraic systems are isomorphic. 
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Solution: The two algebraic system (A1,*) and (A2,⊡) are isomorphic and (A2,⊡) is an 
isomorphic image of A1, such that 

        f( a)=1 
        f (b)=w 
        f (c)= w2 

Automorphism: 

Let (G1,*) and (G2,0) be two algebraic system, where * and 0 both are binary operations 
on G1 and G2 respectively. Then an isomorphism from (G1,*) to (G2,0) is called an 
automorphism if G1= G2 

Rings: 

An algebraic system (R, +,) where R is a set with two arbitrary binary operations + and ., 
is called aring if it satisfies the following conditions 

1. (R, +) is an abelian group. 

2. (R,∙) is a semigroup. 

3. The multiplication operation, is distributive over the addition operation +i.e., 

        a (b+c)=ab +ac and (b+c)a = ba + ca for all a, b, c ∈ R. 

Example1: Consider M be the set of all matrices of the type  over integers under 
matrix addition and matrix multiplication. Thus M form a ring. 

Example2: The set Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8} under the operation addition and 
multiplication modulo 9 forms a ring. 

Types of Rings: 

1. Commutative Rings: A ring (R, +,) is called a commutative ring if it holds the 
commutative law under the operation of multiplication i.e., a. b = b. a, for every a, b∈ R 

Example1: Consider a set E of all even integers under the operation of addition and 
multiplication. The set E forms a commutative ring. 

2. Ring with Unity: A ring (R, +,) is called a ring with unity, if it has a multiplicative 
identity i.e, 
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Example: Consider a set M of all 2 x 2 matrices over integers under matrix 

multiplication and matrix addition. The set M forms a ring with unity . 

3. Ring with Zero Divisions: If a.b=0, where a and b are any two non-zero elements of 
R in the ring (R, +) then a and b are called divisions of zero and the ring (R, +) is called 
ring with zero division. 

4. Rings without Zero Division: An algebraic system (R, +) where R is a set with two 
arbitrary binary operation + and is called a ring without divisors of zero if for every a, b 
∈R, we have a.b≠0 ⟹a≠0 and b ≠0 

SubRings: 

A subset A of a ring (R, +) is called a subring of R, if it satisfies following conditions: 

(A, +) is a subgroup of the group (R,+) 

A is closed under the multiplication operation i.e., a.b ∈A,for every a,b ∈A. 

Example: The ring (I, +) of integers is a subring of ring (R, +) of real numbers. 

 

Isomorphism and Automorphism of groups 

Isomorphism group 

In abstract algebra, a group isomorphism is a function between two groups that sets up 

a one-to-one correspondence between the elements of the groups in a way that 

respects the given group operations. If there exists an isomorphism between two 

groups, then the groups are called isomorphic. From the standpoint of group theory, 

isomorphic groups have the same properties and need not be distinguished. 

Definition and notation 

Given two groups (G, ∗) and (H, {\displaystyle \odot }), a group isomorphism from (G, ∗) 

to (H, {\displaystyle \odot }) is a bijective group homomorphism from G to H. Spelled out, 

this means that a group isomorphism is a bijective function {\displaystyle f:G\rightarrow 

H} such that for all u and v in G it holds that 

{\displaystyle f(u*v)=f(u)\odot f(v)} . 

The two groups (G, ∗) and (H, {\displaystyle \odot }) are isomorphic if there exists an 

isomorphism from one to the other. This is written: 

https://en.wikipedia.org/wiki/Abstract_algebra
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Bijection
https://en.wikipedia.org/wiki/Group_homomorphism
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{\displaystyle (G,*)\cong (H,\odot )}  

Often shorter and simpler notations can be used. When the relevant group operations 

are unambiguous they are omitted and one writes: 

{\displaystyle G\cong H} 

Sometimes one can even simply write G = H. Whether such a notation is possible 

without confusion or ambiguity depends on context. For example, the equals sign is not 

very suitable when the groups are both subgroups of the same group. See also the 

examples. 

Conversely, given a group (G, ∗), a set H, and a bijection {\displaystyle f:G\rightarrow 

H}, we can make H a group (H, {\displaystyle \odot }) by defining 

{\displaystyle f(u)\odot f(v)=f(u*v)}. 

If H = G and {\displaystyle \odot } = ∗ then the bijection is an automorphism (q.v.). 

Intuitively, group theorists view two isomorphic groups as follows: For every 

element g of a group G, there exists an element h of H such that h 'behaves in the same 

way' as g (operates with other elements of the group in the same way as g). For 

instance, if g generates G, then so does h. This implies in particular that G and H are in 

bijective correspondence. Thus, the definition of an isomorphism is quite natural. 

An isomorphism of groups may equivalently be defined as an invertible morphism in 

the category of groups, where invertible here means has a two-sided inverse. 

 

Automorphism group 

In mathematics, the automorphism group of an object X is the group consisting 
of automorphisms of X. For example, if X is a finite-dimensional vector space, then the 
automorphism group of X is the general linear group of X, the group of invertible linear 
transformations from X to itself. 

Especially in geometric contexts, an automorphism group is also called a symmetry 
group. A subgroup of an automorphism group is called a transformation 
group (especially in old literature). 

 

 The automorphism group of a set X is precisely the symmetric group of X. 
 

 A group homomorphism to the automorphism group of a set X amounts to a group 
action on X: indeed, each left G-action on a set X determines , and, conversely, 
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https://en.wikipedia.org/wiki/Invertible
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https://en.wikipedia.org/wiki/Symmetry_group
https://en.wikipedia.org/wiki/Symmetry_group
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Symmetric_group
https://en.wikipedia.org/wiki/Group_homomorphism
https://en.wikipedia.org/wiki/Group_action_(mathematics)
https://en.wikipedia.org/wiki/Group_action_(mathematics)
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each homomorphism  defines an action by . 
 

 Let  be two finite sets of the same cardinality and  the set of all bijections . Then , 
which is a symmetric group (see above), acts on  from the left freely and transitively; 
that is to say,  is a torsor for  (cf. #In category theory). 
 

 The automorphism group  of a finite cyclic group of order n is isomorphic to  with the 
isomorphism given by .[1] In particular,  is an abelian group. 
 

 Given a field extension , its automorphism group is the group consisting of field 
automorphisms of L that fix K: it is better known as the Galois group of . 
 

 The automorphism group of the projective n-space over a field k is the projective 
linear group [2] 

 

 The automorphism group of a finite-dimensional real Lie algebra  has the structure 
of a (real) Lie group (in fact, it is even a linear algebraic group: see below). If G is a 
Lie group with Lie algebra , then the automorphism group of G has a structure of a 
Lie group induced from that on the automorphism group of .[3][4] 

 

 Let P be a finitely generated projective module over a ring R. Then there is 
an embedding , unique up to inner automorphisms.[5] 
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UNIT –II 

Propositional Logic:  

Preposition 

Propositional logic (PL) is the simplest form of logic where all the statements 

are made by propositions. A proposition is a declarative statement which is 
either true or false. It is a technique of knowledge representation in logical 

and mathematical form. 

Example: 

 

1. a) It is Sunday.   

2. b) The Sun rises from West (False proposition)   
3. c) 3+3= 7(False proposition)   

4. d) 5 is a prime number.    

Following are some basic facts about propositional logic: 

o Propositional logic is also called Boolean logic as it works on 0 and 1. 

 

o In propositional logic, we use symbolic variables to represent the logic, 

and we can use any symbol for a representing a proposition, such A, 

B, C, P, Q, R, etc. 

 

o Propositions can be either true or false, but it cannot be both. 

 

o Propositional logic consists of an object, relations or function, 

and logical connectives. 

 

o These connectives are also called logical operators. 

 

o The propositions and connectives are the basic elements of the 

propositional logic. 

 

o Connectives can be said as a logical operator which connects two 

sentences. 

 

o A proposition formula which is always true is called tautology, and it is 

also called a valid sentence. 
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o A proposition formula which is always false is called Contradiction. 

 

o A proposition formula which has both true and false values is called 

 

o Statements which are questions, commands, or opinions are not 

propositions such as "Where is Rohini", "How are you", "What is your 

name", are not propositions. 

Syntax of propositional logic: 

The syntax of propositional logic defines the allowable sentences for the 

knowledge representation. There are two types of Propositions: 

a. Atomic Propositions 

b. Compound propositions 

o Atomic Proposition: Atomic propositions are the simple propositions. It 

consists of a single proposition symbol. These are the sentences which 

must be either true or false. 

Example: 

1. a) 2+2 is 4, it is an atomic proposition as it is a true fact.   

2. b) "The Sun is cold" is also a proposition as it is a false fact.    

3. Compound proposition: Compound propositions are constructed by 
combining simpler or atomic propositions, using parenthesis and 

logical connectives. 

Example: 

1. a) "It is raining today, and street is wet."   

2. b) "Ankit is a doctor, and his clinic is in Mumbai."   

Logical Connectives: 

Logical connectives are used to connect two simpler propositions or 
representing a sentence logically. We can create compound propositions with 

the help of logical connectives. There are mainly five connectives, which are 
given as follows: 
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1. Negation: A sentence such as ¬ P is called negation of P. A literal can 

be either Positive literal or negative literal. 
 

2. Conjunction: A sentence which has ∧ connective such as, P ∧ Q is 

called a conjunction. 
 

Example: Rohan is intelligent and hardworking. It can be written as, 
 

P= Rohan is intelligent, 

 
Q= Rohan is hardworking. → P∧ Q. 

3. Disjunction: A sentence which has ∨ connective, such as P ∨ Q. is 

called disjunction, where P and Q are the propositions. 

 
Example: "Ritika is a doctor or Engineer", 

 
Here P= Ritika is Doctor. Q= Ritika is Doctor, so we can write it as P ∨ 
Q. 
 

4. Implication: A sentence such as P → Q, is called an implication. 

Implications are also known as if-then rules. It can be represented as 

            If it is raining, then the street is wet. 
        Let P= It is raining, and Q= Street is wet, so it is represented as 
P → Q 

 

5. Biconditional: A sentence such as P⇔ Q is a Biconditional sentence, 

example If I am breathing, then I am alive 

            P= I am breathing, Q= I am alive, it can be represented as P 
⇔ Q. 

Following is the summarized table for Propositional Logic Connectives: 

Truth Table: 

In propositional logic, we need to know the truth values of propositions in all 

possible scenarios. We can combine all the possible combination with logical 
connectives, and the representation of these combinations in a tabular 

format is called Truth table. Following are the truth table for all logical 
connectives: 
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First order logic 

In the topic of Propositional logic, we have seen that how to represent statements using 
propositional logic. But unfortunately, in propositional logic, we can only represent the 
facts, which are either true or false. PL is not sufficient to represent the complex 
sentences or natural language statements. The propositional logic has very limited 
expressive power. Consider the following sentence, which we cannot represent using 
PL logic. 

o "Some humans are intelligent", or 

o "Sachin likes cricket." 

To represent the above statements, PL logic is not sufficient, so we required some more 
powerful logic, such as first-order logic. 

First-Order logic: 

o First-order logic is another way of knowledge representation in artificial 

intelligence. It is an extension to propositional logic. 

 

o FOL is sufficiently expressive to represent the natural language statements in a 

concise way. 

 

o First-order logic is also known as Predicate logic or First-order predicate 

logic. First-order logic is a powerful language that develops information about 

the objects in a more easy way and can also express the relationship between 

those objects. 

 

o First-order logic (like natural language) does not only assume that the world 

contains facts like propositional logic but also assumes the following things in the 

world: 

o Objects: A, B, people, numbers, colors, wars, theories, squares, pits, 

wumpus,  

 

o Relations: It can be unary relation such as: red, round, is adjacent, or 

n-any relation such as: the sister of, brother of, has color, comes 

between 

 

o Function: Father of, best friend, third inning of, end of,  
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o As a natural language, first-order logic also has two main parts: 

a. Syntax 

b. Semantics 

Syntax of First-Order logic: 

The syntax of FOL determines which collection of symbols is a logical expression in 
first-order logic. The basic syntactic elements of first-order logic are symbols. We write 
statements in short-hand notation in FOL. 

Basic Elements of First-order logic: 

Following are the basic elements of FOL syntax: 

Constant 1, 2, A, John, Mumbai, cat,.... 

Variables x, y, z, a, b,.... 

Predicates Brother, Father, >,.... 

Function sqrt, LeftLegOf, .... 

Connectives ∧, ∨, ¬, ⇒, ⇔ 

Equality == 

Quantifier ∀, ∃ 

Atomic sentences: 

o Atomic sentences are the most basic sentences of first-order logic. These 

sentences are formed from a predicate symbol followed by a parenthesis with a 

sequence of terms. 

 

o We can represent atomic sentences as Predicate (term1, term2, ......, term n). 

Example: Ravi and Ajay are brothers: => Brothers(Ravi, Ajay). 
                Chinky is a cat: => cat (Chinky). 
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Complex Sentences: 

o Complex sentences are made by combining atomic sentences using 

connectives. 

First-order logic statements can be divided into two parts: 

o Subject: Subject is the main part of the statement. 

 

o Predicate: A predicate can be defined as a relation, which binds two atoms 

together in a statement. 

Consider the statement: "x is an integer.", it consists of two parts, the first part x is 
the subject of the statement and second part "is an integer," is known as a predicate. 

Quantifiers in First-order logic: 

o A quantifier is a language element which generates quantification, and 

quantification specifies the quantity of specimen in the universe of discourse. 

 

o These are the symbols that permit to determine or identify the range and scope 

of the variable in the logical expression. There are two types of quantifier: 

 

a. Universal Quantifier, (for all, everyone, everything) 

b. Existential quantifier, (for some, at least one). 

Universal Quantifier: 

Universal quantifier is a symbol of logical representation, which specifies that the 
statement within its range is true for everything or every instance of a particular thing. 

The Universal quantifier is represented by a symbol ∀, which resembles an inverted A. 

If x is a variable, then ∀x is read as: 

o For all x 

o For each x 

o For every x. 
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Example: 

All man drink coffee. 

Let a variable x which refers to a cat so all x can be represented in UOD as below: 

∀x man(x) → drink (x, coffee). 

It will be read as: There are all x where x is a man who drink coffee. 

Existential Quantifier: 

Existential quantifiers are the type of quantifiers, which express that the statement 
within its scope is true for at least one instance of something. 

It is denoted by the logical operator ∃, which resembles as inverted E. When it is used 
with a predicate variable then it is called as an existential quantifier. 

If x is a variable, then existential quantifier will be ∃x or ∃(x). And it will be read as: 

o There exists a 'x.' 

o For some 'x.' 

o For at least one 'x.' 

Example: 

Some boys are intelligent. 

∃x: boys(x) ∧ intelligent(x) 

It will be read as: There are some x where x is a boy who is intelligent. 

Points to remember: 

o The main connective for universal quantifier ∀ is implication →. 

o The main connective for existential quantifier ∃ is and ∧. 

Properties of Quantifiers: 

o In universal quantifier, ∀x∀y is similar to ∀y∀x. 

o In Existential quantifier, ∃x∃y is similar to ∃y∃x. 
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o ∃x∀y is not similar to ∀y∃x. 

Some Examples of FOL using quantifier: 

1. All birds fly. 
In this question the predicate is "fly(bird)." 
And since there are all birds who fly so it will be represented as follows. 
 
              ∀x bird(x) →fly(x). 

2. Every man respects his parent. 
In this question, the predicate is "respect(x, y)," where x=man, and y= parent. 

Since there is every man so will use ∀, and it will be represented as follows: 
 
              ∀x man(x) → respects (x, parent). 

3. Some boys play cricket. 
In this question, the predicate is "play(x, y)," where x= boys, and y= game. Since there 

are some boys so we will use ∃, and it will be represented as: 
 
              ∃x boys(x) → play(x, cricket). 

4. Not all students like both Mathematics and Science. 
In this question, the predicate is "like(x, y)," where x= student, and y= subject. 

Since there are not all students, so we will use ∀ with negation, so following 
representation for this: 
 
              ¬∀ (x) [ student(x) → like(x, Mathematics) ∧ like(x, Science)]. 

5. Only one student failed in Mathematics. 
In this question, the predicate is "failed(x, y)," where x= student, and y= subject. 
Since there is only one student who failed in Mathematics, so we will use following 
representation for this: 
 

              ∃(x) [ student(x) → failed (x, Mathematics) ∧∀ (y) [¬(x==y) ∧ student(y) → 
¬failed (x, Mathematics)]. 

Free and Bound Variables: 

The quantifiers interact with variables which appear in a suitable way. There are two 
types of variables in First-order logic which are given below: 

Free Variable: A variable is said to be a free variable in a formula if it occurs outside 
the scope of the quantifier. 

          Example: ∀x ∃(y)[P (x, y, z)], where z is a free variable. 
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Bound Variable: A variable is said to be a bound variable in a formula if it occurs within 
the scope of the quantifier. 

          Example: ∀x [A (x) B( y)], here x and y are the bound variables. 

 

Basic logical operations 

1. Negation: It means the opposite of the original statement. If p is a statement, then 
the negation of p is denoted by ~p and read as 'it is not the case that p.' So, if p is true 
then ~ p is false and vice versa. 

Example: If statement p is Paris is in France, then ~ p is 'Paris is not in France'. 

p ~ p 

T F 

F T 

2. Conjunction: It means Anding of two statements. If p, q are two statements, then "p 

and q" is a compound statement, denoted by p ∧ q and referred as the conjunction of p 
and q. The conjunction of p and q is true only when both p and q are true. Otherwise, it 
is false. 

p q p ∧ q 

T T T 

T F F 

F T F 

F F F 

3. Disjunction: It means Oring of two statements. If p, q are two statements, then "p or 

q" is a compound statement, denoted by p ∨ q and referred to as the disjunction of p 
and q. The disjunction of p and q is true whenever at least one of the two statements is 
true, and it is false only when both p and q are false. 
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p q p ∨ q 

T T T 

T F T 

F T T 

F F F 

4. Implication / if-then (⟶): An implication p⟶q is the proposition "if p, then q." It is 
false if p is true and q is false. The rest cases are true. 

p q p ⟶ q 

T T T 

T F F 

F T T 

F F F 

5. If and Only If (↔): p ↔ q is bi-conditional logical connective which is true when p 
and q are same, i.e., both are false or both are true. 

p q p ↔ q 

T T T 

T F F 

F T F 

F F T 
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Derived Connectors 

1. NAND: It means negation after ANDing of two statements. Assume p and q be two 
propositions. Nanding of pand q to be a proposition which is false when both p and q 
are true, otherwise true. It is denoted by p ↑ q. 

p q p ∨ q 

T T F 

T F T 

F T T 

F F T 

2. NOR or Joint Denial: It means negation after ORing of two statements. Assume p 
and q be two propositions. NORing of p and q to be a proposition which is true when 
both p and q are false, otherwise false. It is denoted by p ↑ q. 

p q p ↓ q 

T T F 

T F F 

F T F 

F F T 

3. XOR: Assume p and q be two propositions. XORing of p and q is true if p is true or q 
is true but not both and vice-versa. It is denoted by p ⨁ q. 

p q p ⨁ q 

T T F 

T F T 

F T T 
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F F F 

Example1: Prove that X ⨁ Y ≅ (X ∧∼Y)∨(∼X∧Y). 

Solution: Construct the truth table for both the propositions. 

X Y X⨁Y ∼Y ∼X X ∧∼Y ∼X∧Y (X ∧∼Y)∨(∼X∧Y) 

T T F F F F F F 

T F T T F T F T 

F T T F T F T T 

F F F T T F F F 

As the truth table for both the proposition is the same. 

1. X ⨁ Y ≅ (X ∧∼Y)∨(∼X∧Y). Hence Proved.   

Example2: Show that (p ⨁q) ∨(p↓q) is equivalent to p ↑ q. 

Solution: Construct the truth table for both the propositions. 

p q p⨁q (p↓q) (p⨁q)∨ (p↓q) p ↑ q 

T T F F F F 

T F T F T T 

F T T F T T 

F F F T T T 

 

Tautologies 

A proposition P is a tautology if it is true under all circumstances. It means it contains 
the only T in the final column of its truth table. 
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Example: Prove that the statement (p⟶q) ↔(∼q⟶∼p) is a tautology. 

Solution: Make the truth table of the above statement: 

p q p→q ~q ~p ~q⟶∼p (p→q)⟷( ~q⟶~p) 

T T T F F T T 

T F F T F F T 

F T T F T T T 

F F T T T T T 

As the final column contains all T's, so it is a tautology. 

Contradiction: 

A statement that is always false is known as a contradiction. 

Example: Show that the statement p ∧∼p is a contradiction. 

Solution: 

p ∼p p ∧∼p 

T F F 

F T F 

Since, the last column contains all F's, so it's a contradiction. 

Contingency: 

A statement that can be either true or false depending on the truth values of its 
variables is called a contingency. 

p q p →q p∧q (p →q)⟶ (p∧q ) 

T T T T T 

T F F F T 
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F T T F F 

F F T F F 

 

Contradictions 

A proposition P is a tautology if it is true under all circumstances. It means it contains 
the only T in the final column of its truth table. 

Example: Prove that the statement (p⟶q) ↔(∼q⟶∼p) is a tautology. 

Solution: Make the truth table of the above statement: 

p q p→q ~q ~p ~q⟶∼p (p→q)⟷( ~q⟶~p) 

T T T F F T T 

T F F T F F T 

F T T F T T T 

F F T T T T T 

As the final column contains all T's, so it is a tautology. 

Contradiction: 

A statement that is always false is known as a contradiction. 

Example: Show that the statement p ∧∼p is a contradiction. 

Solution: 

p ∼p p ∧∼p 

T F F 

F T F 

Since, the last column contains all F's, so it's a contradiction. 
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Contingency: 

A statement that can be either true or false depending on the truth values of its 
variables is called a contingency. 

p q p →q p∧q (p →q)⟶ (p∧q ) 

T T T T T 

T F F F T 

F T T F F 

F F T F F 

 

Algebra of Proposition 

The rules of mathematical logic specify methods of reasoning mathematical 
statements. Greek philosopher, Aristotle, was the pioneer of logical reasoning. Logical 
reasoning provides the theoretical base for many areas of mathematics and 
consequently computer science. It has many practical applications in computer science 
like design of computing machines, artificial intelligence, definition of data structures for 
programming languages etc. 

Propositional Logic is concerned with statements to which the truth values, ―true‖ and 
―false‖, can be assigned. The purpose is to analyze these statements either individually 
or in a composite manner. 

Prepositional Logic – Definition 

A proposition is a collection of declarative statements that has either a truth value "true‖ 
or a truth value "false". A propositional consists of propositional variables and 
connectives. We denote the propositional variables by capital letters (A, B, etc). The 
connectives connect the propositional variables. 

Some examples of Propositions are given below − 

 "Man is Mortal", it returns truth value ―TRUE‖ 

 "12 + 9 = 3 – 2", it returns truth value ―FALSE‖ 

The following is not a Proposition − 

 "A is less than 2". It is because unless we give a specific value of A, we cannot 
say whether the statement is true or false. 
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Connectives 

In propositional logic generally we use five connectives which are − 

 OR (∨∨) 
 AND (∧∧) 
 Negation/ NOT (¬¬) 
 Implication / if-then (→→) 

 If and only if (⇔⇔). 
OR (∨∨) − The OR operation of two propositions A and B (written as A∨BA∨B) is true if 
at least any of the propositional variable A or B is true. 

The truth table is as follows – 

 

A B A ∨ B 

True True True 

True False True 

False True True 

False False False 

 

AND (∧∧) − The AND operation of two propositions A and B (written as A∧BA∧B) is 
true if both the propositional variable A and B is true. 

The truth table is as follows – 

 

A B A ∧ B 

True True True 

True False False 

False True False 
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False False False 

 
Negation (¬¬) − The negation of a proposition A (written as ¬A¬A) is false when A is 
true and is true when A is false. 

The truth table is as follows – 

 

A ¬ A 

True False 

False True 

 
Implication / if-then (→→) − An implication A→BA→B is the proposition ―if A, then B‖. 
It is false if A is true and B is false. The rest cases are true. 

The truth table is as follows – 

 

A B A → B 

True True True 

True False False 

False True True 

False False True 

 

If and only if (⇔⇔) − A⇔BA⇔B is bi-conditional logical connective which is true 
when p and q are same, i.e. both are false or both are true. 

The truth table is as follows – 
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A B A ⇔ B 

True True True 

True False False 

False True False 

False False True 

Tautologies 

A Tautology is a formula which is always true for every value of its propositional 
variables. 

Example − Prove [(A→B)∧A]→B[(A→B)∧A]→B is a tautology 

The truth table is as follows – 

 

A B A → B (A → B) ∧ A [( A → B ) ∧ A] → B 

True True True True True 

True False False False True 

False True True False True 

False False True False True 

As we can see every value of [(A→B)∧A]→B[(A→B)∧A]→B is "True", it is a tautology. 

Contradictions 

A Contradiction is a formula which is always false for every value of its propositional 
variables. 
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Example − Prove (A∨B)∧[(¬A)∧(¬B)](A∨B)∧[(¬A)∧(¬B)] is a contradiction 

The truth table is as follows – 

 

A B A ∨ B ¬ A ¬ B (¬ A) ∧ ( ¬ B) (A ∨ B) ∧ [( ¬ A) ∧ (¬ B)] 

True True True False False False False 

True False True False True False False 

False True True True False False False 

False False False True True True False 

 

As we can see every value of (A∨B)∧[(¬A)∧(¬B)](A∨B)∧[(¬A)∧(¬B)] is ―False‖, it is a 
contradiction. 

Contingency 

A Contingency is a formula which has both some true and some false values for every 
value of its propositional variables. 

Example − Prove (A∨B)∧(¬A)(A∨B)∧(¬A) a contingency 

The truth table is as follows – 

 

A B A ∨ B ¬ A (A ∨ B) ∧ (¬ A) 

True True True False False 

True False True False False 

False True True True True 
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False False False True False 

As we can see every value of (A∨B)∧(¬A)(A∨B)∧(¬A) has both ―True‖ and ―False‖, it is 
a contingency. 

Propositional Equivalences 

Two statements X and Y are logically equivalent if any of the following two conditions 
hold − 

 The truth tables of each statement have the same truth values. 

 The bi-conditional statement X⇔YX⇔Y is a tautology. 

Example − Prove ¬(A∨B)and[(¬A)∧(¬B)]¬(A∨B)and[(¬A)∧(¬B)] are equivalent 

Testing by 1st method (Matching truth table) 

 

A B A ∨ B ¬ (A ∨ B) ¬ A ¬ B [(¬ A) ∧ (¬ B)] 

True True True False False False False 

True False True False False True False 

False True True False True False False 

False False False True True True True 

 

Here, we can see the truth values of ¬(A∨B)and[(¬A)∧(¬B)]¬(A∨B)and[(¬A)∧(¬B)] are 
same, hence the statements are equivalent. 

Testing by 2nd method (Bi-conditionality) 

 

 

 



84 
 

A B ¬ (A ∨ B ) [(¬ A) ∧ (¬ B)] [¬ (A ∨ B)] ⇔ [(¬ A ) ∧ (¬ B)] 

True True False False True 

True False False False True 

False True False False True 

False False True True True 

 

As [¬(A∨B)]⇔[(¬A)∧(¬B)][¬(A∨B)]⇔[(¬A)∧(¬B)] is a tautology, the statements are 
equivalent. 

Inverse, Converse, and Contra-positive 

Implication / if-then (→)(→) is also called a conditional statement. It has two parts − 

 Hypothesis, p 

 Conclusion, q 

 
As mentioned earlier, it is denoted as p→qp→q. 

Example of Conditional Statement − ―If you do your homework, you will not be 
punished.‖ Here, "you do your homework" is the hypothesis, p, and "you will not be 
punished" is the conclusion, q. 

Inverse − An inverse of the conditional statement is the negation of both the 
hypothesis and the conclusion. If the statement is ―If p, then q‖, the inverse will be ―If 
not p, then not q‖. Thus the inverse of p→qp→q is ¬p→¬q¬p→¬q. 

Example − The inverse of ―If you do your homework, you will not be punished‖ is ―If 
you do not do your homework, you will be punished.‖ 

Converse − The converse of the conditional statement is computed by interchanging 
the hypothesis and the conclusion. If the statement is ―If p, then q‖, the converse will be 
―If q, then p‖. The converse of p→qp→q is q→pq→p. 

Example − The converse of "If you do your homework, you will not be punished" is "If 
you will not be punished, you do your homework‖. 

Contra-positive − The contra-positive of the conditional is computed by interchanging 
the hypothesis and the conclusion of the inverse statement. If the statement is ―If p, 
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then q‖, the contra-positive will be ―If not q, then not p‖. The contra-positive 
of p→qp→q is ¬q→¬p¬q→¬p. 

Example − The Contra-positive of " If you do your homework, you will not be punished‖ 
is "If you are punished, you did not do your homework‖. 

Duality Principle 

Duality principle states that for any true statement, the dual statement obtained by 
interchanging unions into intersections (and vice versa) and interchanging Universal 
set into Null set (and vice versa) is also true. If dual of any statement is the statement 
itself, it is said self-dual statement. 

Example − The dual of (A∩B)∪C(A∩B)∪C is (A∪B)∩C(A∪B)∩C 

Normal Forms 

We can convert any proposition in two normal forms − 

 Conjunctive normal form 

 Disjunctive normal form 

Conjunctive Normal Form 

A compound statement is in conjunctive normal form if it is obtained by operating AND 
among variables (negation of variables included) connected with ORs. In terms of set 
operations, it is a compound statement obtained by Intersection among variables 
connected with Unions. 

Examples 

 (A∨B)∧(A∨C)∧(B∨C∨D)(A∨B)∧(A∨C)∧(B∨C∨D) 
 (P∪Q)∩(Q∪R)(P∪Q)∩(Q∪R) 

Disjunctive Normal Form 

A compound statement is in disjunctive normal form if it is obtained by operating OR 
among variables (negation of variables included) connected with ANDs. In terms of set 
operations, it is a compound statement obtained by Union among variables connected 
with Intersections. 

 

Examples 

 (A∧B)∨(A∧C)∨(B∧C∧D)(A∧B)∨(A∧C)∨(B∧C∧D) 
 (P∩Q)∪(Q∩R) 
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Logical implication 

A Logical Connective is a symbol which is used to connect two or more propositional or 
predicate logics in such a manner that resultant logic depends only on the input logics 
and the meaning of the connective used. 

Generally there are five connectives which are − 

 OR (∨) 

 AND (∧) 

 Negation/ NOT (¬) 

 Implication / if-then (→) 

 If and only if (⇔). 

OR (∨) − The OR operation of two propositions A and B (written as A ∨ B) is true if at 
least any of the propositional variable A or B is true. 

The truth table is as follows − 

A B A ∨ B 

True True True 

True False True 

False True True 

False False False 

AND (∧) − The AND operation of two propositions A and B (written as A∧BA∧B) is true if 
both the propositional variable A and B is true. 

The truth table is as follows − 

A B A ∧ B 

True True True 

True False False 



87 
 

A B A ∧ B 

False True False 

False False False 

Negation (¬) − The negation of a proposition A (written as ¬ A) is false when A is true 
and is true when A is false. 

The truth table is as follows − 

A ¬ A 

True False 

False True 

Implication / if-then (→) − An implication A → B is the proposition ―if A, then B‖. It is 
false if A is true and B is false. The rest cases are true. 

The truth table is as follows − 

A B A → B 

True True True 

True False False 

False True True 

False False True 

If and only if (⇔) − A ⇔ B is bi-conditional logical connective which is true when p and 
q are same, i.e. both are false or both are true. 

The truth table is as follows − 
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A B A ⇔ B 

True True True 

True False False 

False True False 

False False True 

 

Logical equivalence 

In this lesson, we have discussed the basis of propositional logic. With this logic, 
students can found the truth and falsity of the statements. 

After reading this lesson, you should able to understand 

 What is a propositional logic? and its usage in reasoning. 
 Types of statements 
 Connectives for forming compound statements 

 
7.1Introduction 
 
Logic, logical thinking, and correct reasoning have wide applications in many fields, 
including law, psychology, rhetoric, science, and mathematics. While an interesting 
study can be made of logic in human lives, we shall restrict our attention mainly to logic 
as it is used in mathematics. This logic was first studied systematically by Aristotle (384 
B.C.-322 B.C.). Aristotle and his followers studied patterns of correct and incorrect 
reasoning. 

Medieval philosophers and theologians, who made an intimate study of logical 
arguments, carried the work of Aristotle forward. A big advance in the study of 
mathematical logic came with the work of Gottfried Wilhelm von Leibniz (1646-
1716),one of the inventors of calculus. Leibnitz introduced symbols to represent ideas in 
logic- letters for statements and other symbols for the relations between statements. 
Leibnitz hoped that logic would become a universal characteristic and unify all of 
mathematics. 

Logic is the tool for reasoning about the truth and falsity of statements. There are two 
main directions in which logic develops. 
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 The first is the depth to which we explore the structure of statements. The study of 
the basic level of structure is called propositional logic. First order predicate logic, 
which is often called just predicate logic, studies structure on a deeper level. 

 The second direction is the nature of truth. For example, one may talk about 
statements that are usually true or true at certain times. 

―True‖ and ―false‖ could be replaced by T and F (or any other two symbols) in our 
discussions. Using T and F relates logic to Boolean functions. In fact, propositional logic 
is the study of Boolean functions, where T plays the role of ―true‖ and F the role of 
―false.‖ 

Our study is restricted to propositional and predicate logic only. 

  

7.2 Propositional calculus 
7.2.1 Propositions 
A declarative sentence that is either true or false, but not both, is called a proposition. 

In mathematics, the propositions are denoted by alphabets known as propositional 
variables. The conventionally used alphabets are p, q, r, s, and so on. The truth- value 
of a proposition is true, denoted by T, if it is a true proposition and false, denoted by F, if 
it is a false proposition. Here the letters T and F are constants. 

Example for a true proposition: 

Chennai is the state capital of Tamil Nadu. — (1) 

The truth-value of the above statement is true, dented by T. 

Example for a false proposition: 

Oxygen is a solid. — (2) 

The truth-value of the above statement is false, dented by F. 

The area of logic that deals with propositions is called the propositional calculusor 
propositional logic. 

7.2.2 Types of Propositions 
There are two types of propositions namely 

1)Simple proposition and 

2)Compound proposition. 

A simple proposition is one in which the sentences cannot be further broken into simple 
or atomic sentences. Two or more simple propositions connected by operators is known 
as a compound proposition. The operators are known as logical connectives or simply 
connectives. The logical connectives are shown in the table 3.1. 

Table 3.1 – Logical connectives. 
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Symbol Connective Type of statement 

Ø not Negation 

Ù and Conjunction 

Ú or Disjunction 

® implies implication or conditional 

« if and only if equivalence or biconditional 

  

Truth Table: It shows the relationship between the truth- value of a compound 
proposition and the truth-values of its constituent simple propositions. 

7.2.3 Basic Logical Operations 
The basic logical operations are conjunction, disjunction and negation. 

Conjunction 

Let p and q be propositions. The proposition ―p and q‖, denoted by p Ù q, is true when 
both p and q are true and is false otherwise. The statement p Ù q is called the 
conjunction of p and q. 

The truth table for the conjunctions of two propositions is given in the table 3.2. 

Table 3.2   

p q p Ù q 

T T T 

T F F 

F T F 

F F F 

Illustration 

a)Consider the following four compound statements 

1)Bharathiar University is at Coimbatore and 2+2 = 4. 

2)Bharathiar University is at Coimbatore and 2+2 = 5. 

3)Bharathiar University is at Chennai and 2+2 = 4. 

4)Bharathiar University is at Chennai and 2+2 = 5. 

Only the first statement is true. Each of the other statements is false, since at least one 
of its simple statements is false. 
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Disjunction 

Let p and q be propositions. The proposition ―p or q‖, denoted by p Ú q, is false when 
both p and q are false and is true otherwise. The statement p Ú q is called the 
disjunction of p and q. 

The truth table for the disjunctions of two propositions is given in the table 3.3. 

Table 3.3 

p q p Ú q 

T T T 

T F T 

F T T 

F F F 

  

Illustration 

b)Consider the following four compound statements 

1)Bharathiar University is at Coimbatore or 2+2 = 4. 

2)Bharathiar University is at Coimbatore or 2+2 = 5. 

3)Bharathiar University is at Chennai or 2+2 = 4. 

4)Bharathiar University is at Chennai or 2+2 = 5. 

Only the last statement is false. Each of the other statements is true, since at least one 
of its simple statements is true. 

The disjunction may be either Inclusive or Exclusive. In the inclusive disjunction the 
compound statement p Ú q is true only when at least one of the statement is true. But in 
the exclusive disjunction, commonly called inequivalence, the compound statement p 

Ú q is true only when either p or q but not both, is true. 

Example 1 

Let p : ABC Company earned 20% profit per share in 2005. q : ABC Company paid 12% 
dividend per share in 2005. 

The inclusive disjunction of p and q is 

p Ú q : ABC Company earned 20% profit per share in 2005 or ABC Company paid 12% 
dividend per share in 2005 or both. 
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The exclusive disjunction of p and q is 

p Ú q : ABC Company earned 20% profit per share in 2005 or ABC Company paid 12% 
dividend per share in 2005 but not both. 

Negation 

The negation of a true statement is false, and the negation of a false statement is true. 
Its truth table is given in the table 3.4. 

Table 3.4 

p Ø p 

T F 

F T 

  

7.2.4 Derived Connectives 
NAND 

It is obtained by negating the result of ANDing of two statements. 

For example, If p and q are two statements then NANDing of these two statements, 
denoted by p – q, is false when both p and q are true, otherwise true. Its truth table is 
given in the table 3.5. 

Table 3.5 

p q p – q 

T T F 

T F T 

F T T 

F F T 

NOR 

It is obtained by negating the result of ORing of two statements. 

For example, if p and q are two statements then ORing of these two statements, 
denoted by p ¯ q, is true when both p and q are false, otherwise false. Its truth table is 
given in the table 3.6. 

Table 3.6   

p q p ¯ q 
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T T F 

T F F 

F T F 

F F T 

XOR 

If p and q are two statements then XORing of these two statements, denoted by p 

Å q, is false when both p and q are same, otherwise true. Its truth table is given in the 
table 3.7. 

Table 3.7 

p q p Å q 

T T F 

T F T 

F T T 

F F F 

  

7.3 Conditional statement 
 
A conditional statement is a compound statement that uses the connective if…then. For 
example, the statement 

If I read for too long, then I get a headache. 

In the above statement, the component coming after the word if gives a condition (but 
not necessarily the only condition) under which the statement coming after then will be 
true. 

The conditional is written with an arrow, so that ―if p, then q‖ is symbolized as p®q. We 
read p ® q as ―p implies q‖ or ―if p, then q‖. In the conditional p ® q, the statement p is 
the antecedent, while q is the consequent. 

The conditional connective may not always be explicitly stated. That is, it may be 
―hidden‖ in an everyday expression. For example, the statement 

―It is difficult to study when you are distracted‖ 

can be written 

―It you are distracted then it is difficult to study‖. 
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Truth table for the conditional ―if p, then q‖ is given in 3.8 

Table 3.8 

p q p ® q 

T T T 

T F F 

F T T 

F F T 

7.3.1Special characteristics of conditional statements 
 
1)p ® q is false only when the antecedent is true and the consequent is false. 

2)If the antecedent is false, then p ® q is automatically true. 

3)If the consequent is true, then p ® q is automatically true. 

Negation of p ® q 

The negation of p ® q is p Ù Ø q. 

Conditional as a disjunction 

A conditional may be written as a disjunction as below. 

p ® q is equivalent to Ø p Ú q. 

  

7.3.2 Converse, Inverse and Contrapositive 
 
An conditional statement is made up of an antecedent and a consequent. If they are 
interchanged, negated or both, a new conditional statement is formed. Suppose that we 
begin with the direct statement 

―If you stay, then I go,‖ 

and interchange the antecedent (―you stay‖) and the consequent (―I go‖). We obtain the 
new conditional statement 

―If I go, then you stay.‖ 

This new conditional is called the converse of the given statement. 

By negating both the antecedent and the consequent, we obtain the inverse of the given 
statement. 



95 
 

―If you do not stay, then I do not go.‖ 

If the antecedent and the consequent are both interchanged and negated, 
thecontrapositive of the given statement is formed: 

―If I do not go, then you do not stay.‖ 

These three related statements for the conditional p ® q are summarized below. 

Related conditional Statements     

Direct statement p ® q (If p, then q.) 

Converse q ® p (If q, then p.) 

Inverse Ø p ® Ø q (If not p, then not q.) 

Contrapositive Ø q ® Ø p (If not q, then not p.) 

 
7.4 Biconditional statement 
     

In elementary algebra we learn that both of these statements are true: 

If x > 0, then 5x > 0. 

If 5x > 0, then x > 0. 

Notice that the second statement is the converse of the first. If we wish to make the 
statement that each condition (x > 0, 5x > 0) implies the other, we use the following 
language: 

x > 0 if and only if 5x > 0. This also may be stated as 

5x > 0 if and only if x > 0. 

The compound statement p if and only if q is called a biconditional. It is symbolized p « 
q, and is interpreted as the conjunction of the two conditionals p ® q and q ® p. Using 
symbols, this conjunction is written 

(p ® q) Ù (q ® p ) 

so that, by definition, 

p « q º (p ® q) Ù (q ® p ). 

  

Using this definition, the truth table for the biconditional p « q can be determined as 
shown in table 3.9. 
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Table 3.9   

p q p « q 

T T T 

T F F 

F T F 

F F T 

Example 2 

Tell whether each biconditional statement is true or false. 

(a) 6+9= 15 if and only if 12+4= 16 

Both 6 + 9 = 15 and 12 + 4 = 16 are true. By the truth table for the biconditional, this 
biconditional is true. 

(b) 5 + 2 = 10 if and only if 17 + 19 = 36 . 

Since the first component (5 + 2 = 10) is false, and the second is true, the entire 
biconditional statement is false. 

(c) 6=5 if and only if 12¹12 

Both component statements are false, so by the last line of the truth table for the 
biconditional, the entire statement is true. (Understanding this might take some extra 
thought!) . 

  

7.5 Problems and Solutions     

1) Make truth tables for     

(a) (p ¯ q) Ù (p ¯ r) (b) p – q – r (c) p Å q Å r 

Solution (a) Truth table is shown in Table 3.10 

Truth table 3.10: (p ¯ q) Ù (p ¯ r) 

p Q r (p ¯ q) (p ¯ r) (p ¯ q) Ù (p ¯ r) 

T T T F F F 

T T F F F F 

T F T F F F 

T F F F F F 
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F T T F F F 

F T F F T F 

F F T T F F 

F F T T T T 

(b) The truth table is shown in Table 3.11     

Truth table: 3.11 p – q – r       

p Q r p – q p – q – r   

T T T F T   

T T F F T   

T F T T F   

T F F T T   

F T T T F   

F T F T T   

F F T T F   

F F F T T   

(c) The truth table is shown in Table 3.12. 

Truth table: 3.12 p Å q Å r     

p q r p Å q p Å q Å r 

T T T F T 

T T F F F 

T F T T F 

T F F T T 

F T T T F 

F T F T T 

F F T F T 

F F F F F 

  

2) If p and q are two statements, then show that the statement (p – q ) Å ( p – q ) is 
equivalent to (p Ú q) Ù (p ¯ q). 
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Solution: The equivalence of two compound statements is shown in the truth Table 
3.13. 

Truth table: 3.13 (p – q) Å (p – q) and (p Ú q) Ù (p ¯ q)   

p Q p – q (p – q) Å (p – q) (p Ú q) (p ¯ q) (p Ú q) Ù (p ¯ q) 

(1) (2) (3) (4) (5) (6) (7) 

T T F F T F F 

T F T F T F F 

F T T F T F F 

F F T F F T F 

Since values in Columns (4) and (7) are same, therefore two statements are equivalent. 

3) If p and q are two statements, then show that p Å q is equivalent to (p ÙØ q)Ú(Øp Ù 
g). 

Solution: The equivalence of two compound statements is shown in truth Table 3.14. 

Truth table 3.14 : p Å q and (p ÙØ q) Ú (Øp Ù g) 

p q p Å q Ø p Ø q p ÙØ q Øp Ù g (p ÙØ q) Ú (Øp Ù g) 

(1) (2) (3) (4) (5) (6) (7) (8) 

T T F F F F F F 

T F T T T T F T 

F T T F F F T T 

F F F T T F F F 

Since values in Columns (3) and (8) are same, therefore two compound statements are 
equivalent. 

4) If p and q are two statements, then show that the statement (p Å q) Ú (p ¯ q) is 
equivalent to p-q. 

Solution: The equivalence of two compound statements is shown in truth Table 3.15. 

Truth table: 3.15 (p Å q) Ú (p ¯ q) and p-q       

p q (p Å q) (p ¯ q) (p Å q) Ú (p ¯ q) p-q 

(1) (2) (3) (4) (5) (6) 

T T F F F F 
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T F T F T T 

F T T F T T 

F F F T T T 

Since values in Columns (5) and (6) are same, therefore two compound statements are 

equivalent. 

  

7.6Let Us Sum Up 
 
Symbols Used in this Chapter 

  

Connectives Symbols 

Types of 

  

Statements   

and 

  

  Ù Conjunction 

  or Ú Disjunction 

  not Ø Negation 

  if. . . then ® Conditional 

  if and only if « Biconditional 

Truth Tables 

p Ø p 

T F 

F T 

p q p Ù q p Ú q p – q p ¯ q p Å q p ® q p « q 

T T T T F F F T T 

T F F T T F T F F 

F T F T T F T T F 

F F F F T T F T T 

Statements Related to Conditional 

Direct statement p ® q (If p, then q.) 
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Converse q ® p (If q, then p.) 

Inverse Ø p ® Ø q (If not p, then not q.) 

Contrapositive Ø q ® Ø p (If not q, then not p.) 

  

7.7 Lesson End Activities 
 
Write a negation for each of the following statements. 

1.5+3=9 

2.Every good boy deserves favour. 

3.Some people here can‘t play this game. 

4.If it ever comes to that, I won‘t be here. 

5.My mind is made up and you can‘t change it. 

Let p represent ―it is broken‖ and let q represent ―you can fix it.‖ Write each of the fol- 
lowing in symbols. 

6.If it isn‘t broken, then you can fix it. 

7.It is broken or you can‘t fix it. 

8.You can‘t fix anything that is broken. 

Using the same directions as for Exercises 6-8, write each of the following in words. 

9. Øp Ù q 10. p « Øq 
In each of the following, assume that p and q are true, with r false. Find the truth value 
of 

each statement.   

11. Øp Ù Ør 12. r Ú (pÙq) 

13.r ® (sÚr) (The truth value of the statement s is unknown.) 

14.r « (p®Øq) 

15.What are the necessary conditions for a conditional statement to be false? for a con- 
junction to be true? 

16.Explain in your own words why, if p is a statement, the biconditional p« Øp must be 
false. 

Write a truth table for each of the following. Identify any tautologies. 
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17. p Ù (Øp Ú q) 18. Ø(pÙq)®(ØpÚØq) 
Decide whether each statement is true or false. 

19.All positive integers are whole numbers. 

20.If x + 4 = 6, then x > 1. 

Write each conditional statement in the form if. . . then. 

21.All rational numbers are real numbers. 

22.Being a rectangle is sufficient for a polygon to be a quadrilateral. 

23.Being divisible by 2 is necessary for a number to be divisible by 6. 

24.She cries only if she is hurt. 

For each statement, write (a) the converse, (b) the inverse, and (c) the contrapositive. 

25.If a picture paints a thousand words, the graph will help me understand it. 

26.Øp®(qÙr) (Use one of De Morgan‘s laws as necessary.) 

 

Normal forms 

The problem of finding whether a given statement is tautology or contradiction or 
satisfiable in a finite number of steps is called the Decision Problem. For Decision 
Problem, construction of truth table may not be practical always. We consider an 
alternate procedure known as the reduction to normal forms. 

There are two such forms: 

1. Disjunctive Normal Form (DNF) 

2. Conjunctive Normal Form 

Disjunctive Normal Form (DNF): If p, q are two statements, then "p or q" is a compound 

statement, denoted by p ∨ q and referred as the disjunction of p and q. The disjunction 
of p and q is true whenever at least one of the two statements is true, and it is false only 
when both p and q are false 

p q p ∨ q 

T T T 

T F T 
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F T T 

F F F 

Example: - if p is "4 is a positive integer" and q is "√5 is a rational number", then p ∨ q is 
true as statement p is true, although statement q is false. 

Conjunctive Normal Form: If p, q are two statements, then "p and q" is a compound 

statement, denoted by p ∧ q and referred as the conjunction of p and q. The conjunction 
of p and q is true only when both p and q are true, otherwise, it is false 

p q p ∧ q 

T T T 

T F F 

F T F 

F F F 

Example: if statement p is "6<7" and statement q is "-3>-4" then the conjunction of p 
and q is true as both p and q are true statements. 

Inference Theory 

To deduce new statements from the statements whose truth that we already 
know, Rules of Inference are used. 

What are Rules of Inference for? 

Mathematical logic is often used for logical proofs. Proofs are valid arguments that 
determine the truth values of mathematical statements. 

An argument is a sequence of statements. The last statement is the conclusion and all 

its preceding statements are called premises (or hypothesis). The symbol ―∴∴‖, (read 
therefore) is placed before the conclusion. A valid argument is one where the 
conclusion follows from the truth values of the premises. 

Rules of Inference provide the templates or guidelines for constructing valid arguments 
from the statements that we already have. 
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Table of Rules of Inference 

Rule of 

Inference 

Name Rule of Inference Name 

P∴P∨QP∴P∨Q 

Addition 

P∨Q¬P∴QP∨Q¬P∴Q 
Disjuncti

ve 
Syllogis

m 

PQ∴P∧QPQ∴P∧

Q Conjunct
ion 

P→QQ→R∴P→RP→QQ→R∴P→R 
Hypothe

tical 
Syllogis

m 

P∧Q∴PP∧Q∴P 

Simplific
ation 

(P→Q)∧(R→S)P∨R∴Q∨S(P→Q)∧(R→S)P∨

R∴Q∨S 
Constru

ctive 
Dilemm

a 

P→QP∴QP→QP

∴Q Modus 
Ponens 

(P→Q)∧(R→S)¬Q∨¬S∴¬P∨¬R(P→Q)∧(R

→S)¬Q∨¬S∴¬P∨¬R 
Destruct

ive 
Dilemm

a 

P→Q¬Q∴¬PP→

Q¬Q∴¬P 
Modus 
Tollens 

  

Addition 

If P is a premise, we can use Addition rule to derive P∨QP∨Q. 
P∴P∨QP∴P∨Q 

Example 

Let P be the proposition, ―He studies very hard‖ is true 

Therefore − "Either he studies very hard Or he is a very bad student." Here Q is the 
proposition ―he is a very bad student‖. 
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Conjunction 

If P and Q are two premises, we can use Conjunction rule to derive P∧QP∧Q. 
PQ∴P∧QPQ∴P∧Q 

Example 

Let P − ―He studies very hard‖ 

Let Q − ―He is the best boy in the class‖ 

Therefore − "He studies very hard and he is the best boy in the class" 

Simplification 

If P∧QP∧Q is a premise, we can use Simplification rule to derive P. 
P∧Q∴PP∧Q∴P 

Example 

 

"He studies very hard and he is the best boy in the class", P∧QP∧Q 

Therefore − "He studies very hard" 

Modus Ponens 

If P and P→QP→Q are two premises, we can use Modus Ponens to derive Q. 

P→QP∴QP→QP∴Q 

Example 

"If you have a password, then you can log on to facebook", P→QP→Q 

"You have a password", P 

Therefore − "You can log on to facebook" 

Modus Tollens 

If P→QP→Q and ¬Q¬Q are two premises, we can use Modus Tollens to derive ¬P¬P. 

P→Q¬Q∴¬PP→Q¬Q∴¬P 

Example 

"If you have a password, then you can log on to facebook", P→QP→Q 
"You cannot log on to facebook", ¬Q¬Q 

Therefore − "You do not have a password " 
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Disjunctive Syllogism 

If ¬P¬P and P∨QP∨Q are two premises, we can use Disjunctive Syllogism to derive Q. 
¬PP∨Q∴Q¬PP∨Q∴Q 

Example 

"The ice cream is not vanilla flavored", ¬P¬P 

"The ice cream is either vanilla flavored or chocolate flavored", P∨QP∨Q 

Therefore − "The ice cream is chocolate flavored‖ 

Hypothetical Syllogism 

If P→QP→Q and Q→RQ→R are two premises, we can use Hypothetical Syllogism to 
derive P→RP→R 

P→QQ→R∴P→RP→QQ→R∴P→R 

Example 

"If it rains, I shall not go to school‖, P→QP→Q 
"If I don't go to school, I won't need to do homework", Q→RQ→R 

Therefore − "If it rains, I won't need to do homework" 

Constructive Dilemma 

If (P→Q)∧(R→S)(P→Q)∧(R→S) and P∨RP∨R are two premises, we can use 

constructive dilemma to derive Q∨SQ∨S. 
(P→Q)∧(R→S)P∨R∴Q∨S(P→Q)∧(R→S)P∨R∴Q∨S 

Example 

―If it rains, I will take a leave‖, (P→Q)(P→Q) 
―If it is hot outside, I will go for a shower‖, (R→S)(R→S) 
―Either it will rain or it is hot outside‖, P∨RP∨R 

Therefore − "I will take a leave or I will go for a shower" 

Destructive Dilemma 

If (P→Q)∧ (R→S)(P→Q)∧ (R→S) and ¬Q∨¬S¬Q∨¬S are two premises, we can use 
destructive dilemma to derive ¬P∨¬R¬P∨¬R. 

(P→Q)∧ (R→S)¬Q∨¬S∴ ¬P∨¬R(P→Q)∧ (R→S)¬Q∨¬S∴ ¬P∨¬R 

Example 

―If it rains, I will take a leave‖, (P→Q)(P→Q) 
―If it is hot outside, I will go for a shower‖, (R→S)(R→S) 
―Either I will not take a leave or I will not go for a shower‖, ¬Q∨¬S¬Q∨¬S 

Therefore − "Either it does not rain or it is not hot outside" 
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Predicates and quantifiers 

Predicate Logic deals with predicates, which are propositions, consist of variables. 

Predicate Logic - Definition 

A predicate is an expression of one or more variables determined on some specific 
domain. A predicate with variables can be made a proposition by either authorizing a 
value to the variable or by quantifying the variable. 

The following are some examples of predicates. 

o Consider E(x, y) denote "x = y" 

o Consider X(a, b, c) denote "a + b + c = 0" 

o Consider M(x, y) denote "x is married to y." 

Quantifier: 

The variable of predicates is quantified by quantifiers. There are two types of quantifier 
in predicate logic - Existential Quantifier and Universal Quantifier. 

Existential Quantifier: 

If p(x) is a proposition over the universe U. Then it is denoted as ∃x p(x) and read as 
"There exists at least one value in the universe of variable x such that p(x) is true. The 
quantifier ∃ is called the existential quantifier. 

There are several ways to write a proposition, with an existential quantifier, i.e., 

(∃x∈A)p(x)    or    ∃x∈A    such that p (x)    or    (∃x)p(x)    or    p(x) is true for some x ∈A. 

Universal Quantifier: 

If p(x) is a proposition over the universe U. Then it is denoted as ∀x,p(x) and read as 
"For every x∈U,p(x) is true." The quantifier ∀ is called the Universal Quantifier. 

There are several ways to write a proposition, with a universal quantifier. 

∀x∈A,p(x)    or    p(x), ∀x ∈A      Or    ∀x,p(x)    or    p(x) is true for all x ∈A. 

Negation of Quantified Propositions: 

When we negate a quantified proposition, i.e., when a universally quantified proposition 
is negated, we obtain an existentially quantified proposition,and when an existentially 
quantified proposition is negated, we obtain a universally quantified proposition. 
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The two rules for negation of quantified proposition are as follows. These are also called 
DeMorgan's Law. 

Example: Negate each of the following propositions: 

1.∀x p(x)∧ ∃ y q(y) 

Sol: ~.∀x p(x)∧ ∃ y q(y)) 
      ≅~∀ x p(x)∨∼∃yq (y)        (∴∼(p∧q)=∼p∨∼q) 
      ≅ ∃ x ~p(x)∨∀y∼q(y) 

2. (∃x∈U) (x+6=25) 

Sol: ~( ∃ x∈U) (x+6=25) 

      ≅∀ x∈U~ (x+6)=25 
      ≅(∀ x∈U) (x+6)≠25 

3. ~( ∃ x p(x)∨∀ y q(y) 

Sol: ~( ∃ x p(x)∨∀ y q(y)) 
      ≅~∃ x p(x)∧~∀ y q(y)        (∴~(p∨q)= ∼p∧∼q) 
      ≅ ∀ x ∼ p(x)∧∃y~q(y)) 

Propositions with Multiple Quantifiers: 

The proposition having more than one variable can be quantified with multiple 
quantifiers. The multiple universal quantifiers can be arranged in any order without 
altering the meaning of the resulting proposition. Also, the multiple existential quantifiers 
can be arranged in any order without altering the meaning of the proposition. 

The proposition which contains both universal and existential quantifiers, the order of 
those quantifiers can't be exchanged without altering the meaning of the proposition, 

e.g., the proposition ∃x ∀ y p(x,y) means "There exists some x such that p (x, y) is true 
for every y." 

Example: Write the negation for each of the following. Determine whether the resulting 
statement is true or false. Assume U = R. 

1.∀ x ∃ m(x2<m) 

Sol: Negation of ∀ x ∃ m(x2<m) is ∃ x ∀ m (x2≥m). The meaning of ∃ x ∀ m (x2≥m) is 
that there exists for some x such that x2≥m, for every m. The statement is true as there 
is some greater x such that x2≥m, for every m. 

2. ∃ m∀ x(x2<m) 
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Sol: Negation of ∃ m ∀ x (x2<m) is ∀ m∃x (x2≥m). The meaning of ∀ m∃x (x2≥m) is that 
for every m, there exists for some x such that x2≥m. The statement is true as for every 
m, there exists for some greater x such that x2≥m. 

 

Posets 

There has been some research between posets and algebraic structures. Neggers 

[1] proved that there is a natural isomorphism between the category of pogroupoids and 

the category of posets. Neggers and Kim [2] showed that a poset (X,≤) is (C2+1–)-free if 

and only if its associated pogroupoid (X,⋅) is modular*. Neggers and Kim [3] introduced 

the notion of d-algebras. It is a kind of generalization of BCK-algebras to which they 

discussed some relations between d-algebras and BCK-algebras, as well as some 

relations between d-algebras and oriented digraphs. Cha et al. [4] introduced the 

notions of a trend and probability functions on d-algebras. They obtained an equivalent 

condition defining a trend π0 with condition (j) on a standard BCK-algebra. Loof et al. [5] 

discussed mutual rank probabilities in partially ordered sets. Baets et al. [6] 

characterized the transitivity of the mutual rank probability relation of a poset, and 

Lerche et al. [7] evaluated ranking probabilities for partial orders based on random 

linear extensions. 

In this paper, we define a probability function on a poset. The idea of a probability 

function on a poset came from [4], and we obtained some probability functions on a 

poset. We defined a probability realizer on a poset, and found some examples for 

probability realizers of posets for the standard probability function π0. Moreover, we 

applied the notion of a probability function to the ordered plane (order geometry), and 

found three probability functions acting on it. Some comments have been suggested for 

further research. 

Preliminaries 

Some definitions and terminologies will be recalled for partially ordered sets which 

are necessary for reading this paper. 

An ordered pair (X,≤) is called a partially ordered set if ≤ is a partial order, i.e., 

reflexive, anti-symmetric, and transitive, on the set X. A poset (X,≤) is said to be 

a chain if every two distinct elements of X are comparable, and we denote it 

by Cn when the cardinality of X is equal to n. A poset (X,≤) is said to be an anti-chain if 

every two distinct elements of X are incomparable, and we denote it by n−− when the 

cardinality of X is equal to n. Given two posets X and Y, a poset Z is said to be 

an ordinal sum of X and Y if z1≤z2 in Z, then either z1∈X and z2∈Y or z1≤z2 in X, 

https://www.mdpi.com/2227-7390/7/9/785/htm#B1-mathematics-07-00785
https://www.mdpi.com/2227-7390/7/9/785/htm#B2-mathematics-07-00785
https://www.mdpi.com/2227-7390/7/9/785/htm#B3-mathematics-07-00785
https://www.mdpi.com/2227-7390/7/9/785/htm#B4-mathematics-07-00785
https://www.mdpi.com/2227-7390/7/9/785/htm#B5-mathematics-07-00785
https://www.mdpi.com/2227-7390/7/9/785/htm#B6-mathematics-07-00785
https://www.mdpi.com/2227-7390/7/9/785/htm#B7-mathematics-07-00785
https://www.mdpi.com/2227-7390/7/9/785/htm#B4-mathematics-07-00785
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or z1≤z2 in Y. A graph Z can be realized by placing the Hasse diagram of Y above the 

Hasse diagram of X, and by drawing line segments from the maximal elements of X to 

all the minimal elements of Y. We denote it by Z=X⊕Y. A chain (X,≤∗) is said to be 

a linear extension of a poset (X,≤) if x≤y implies x≤∗y. A family of linear 

extensions R={L1,⋯,Lk} of a poset (X,≤) is said to be a realizer of (X,≤) if (X,≤) can be 

realized as the intersection of R, but not as the intersection of fewer than k linear 

extensions. For details we refer to [8]. 

A non-empty set X with a constant 0 and a binary operation ―*‖ is said to be a d-

algebra [3] if it satisfies: (i) x∗x=0, (ii) 0∗x=0, and (iii) x∗y=0 and y∗x=0 imply x=y for 

all x,y∈X. 

A mapping π:X×X→[0,1] is said to be a trend [4] on a d-algebra (X,∗,0) if it satisfies: 

for any x,y∈X, 

(a) 

x∗y=0 implies π(x,y)=1, 

(b) 

x∗y≠0 implies π(x,y)+π(y,x)=1. 

A trend π:X×X→[0,1] is said to be a probability function [4] on a d-algebra (X,∗,0) if 

it satisfies: for any x,y,z∈X, 

(c) 

y∗z=0 implies π(x,y)≤π(x,z). 

It is of course possible to consider other conditions to build (different) notions of 

trends and probability functions and to compare the resulting classes with those 

obtained here. In fact, we will actually do so below. As an example of the situation 

above, let X:=[0,∞) and let x∗y:=0 if and only if x≤y, and x∗y:=1 otherwise. Thus (a) 

holds if π(x,y):=x∗y. If y≤z, then x≤y implies x≤z while y>z means π(y,z)=y∗z=1, so that 

(c) does not apply in that case. Condition (b) holds since x∗y≠0 implies x∗y=1, 

and x>y yields π(y,x)=1 since y<x in that case. The groupoid (X,∗,0) is certainly a d-

algebra. 

 

 

 

https://www.mdpi.com/2227-7390/7/9/785/htm#B8-mathematics-07-00785
https://www.mdpi.com/2227-7390/7/9/785/htm#B3-mathematics-07-00785
https://www.mdpi.com/2227-7390/7/9/785/htm#B4-mathematics-07-00785
https://www.mdpi.com/2227-7390/7/9/785/htm#B4-mathematics-07-00785
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Hasse Diagram 

It is a useful tool, which completely describes the associated partial order. Therefore, it 
is also called an ordering diagram. It is very easy to convert a directed graph of a 
relation on a set A to an equivalent Hasse diagram. Therefore, while drawing a Hasse 
diagram following points must be remembered. 

1. The vertices in the Hasse diagram are denoted by points rather than by circles. 

2. Since a partial order is reflexive, hence each vertex of A must be related to itself, 

so the edges from a vertex to itself are deleted in Hasse diagram. 

3. Since a partial order is transitive, hence whenever aRb, bRc, we have aRc. 

Eliminate all edges that are implied by the transitive property in Hasse diagram, 

i.e., Delete edge from a to c but retain the other two edges. 

4. If a vertex 'a' is connected to vertex 'b' by an edge, i.e., aRb, then the vertex 'b' 

appears above vertex 'a'. Therefore, the arrow may be omitted from the edges in 

the Hasse diagram. 

The Hasse diagram is much simpler than the directed graph of the partial order. 

Example: Consider the set A = {4, 5, 6, 7}. Let R be the relation ≤ on A. Draw the 
directed graph and the Hasse diagram of R. 

Solution: The relation ≤ on the set A is given by 

             R = {{4, 5}, {4, 6}, {4, 7}, {5, 6}, {5, 7}, {6, 7}, {4, 4}, {5, 5}, {6, 6}, {7, 7}} 

The directed graph of the relation R is as shown in fig: 
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To draw the Hasse diagram of partial order, apply the following points: 

1. Delete all edges implied by reflexive property i.e. 

(4, 4), (5, 5), (6, 6), (7, 7) 

2. Delete all edges implied by transitive property i.e. 

(4, 7), (5, 7), (4, 6) 

3. Replace the circles representing the vertices by dots. 

4. Omit the arrows. 

The Hasse diagram is as shown in fig: 

 
 

Upper Bound: Consider B be a subset of a partially ordered set A. An element x ∈ A is 
called an upper bound of B if y ≤ x for every y ∈ B. 

Lower Bound: Consider B be a subset of a partially ordered set A. An element z ∈ A is 
called a lower bound of B if z ≤ x for every x ∈ B. 
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Example: Consider the poset A = {a, b, c, d, e, f, g} be ordered shown in fig. Also let B 
= {c, d, e}. Determine the upper and lower bound of B. 

 
 

Solution: The upper bound of B is e, f, and g because every element of B is '≤' e, f, and 
g. 

The lower bounds of B are a and b because a and b are '≤' every elements of B. 

Least Upper Bound (SUPREMUM): 

Let A be a subset of a partially ordered set S. An element M in S is called an upper 
bound of A if M succeeds every element of A, i.e. if, for every x in A, we have x <=M 

If an upper bound of A precedes every other upper bound of A, then it is called the 
supremum of A and is denoted by Sup (A) 
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Greatest Lower Bound (INFIMUM): 

An element m in a poset S is called a lower bound of a subset A of S if m precedes 
every element of A, i.e. if, for every y in A, we have m <=y 

If a lower bound of A succeeds every other lower bound of A, then it is called the 
infimum of A and is denoted by Inf (A) 

Example: Determine the least upper bound and greatest lower bound of B = {a, b, c} if 
they exist, of the poset whose Hasse diagram is shown in fig: 

 
 

Solution: The least upper bound is c. 

The greatest lower bound is k. 
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Lattices:  

Introduction 

Let L be a non-empty set closed under two binary operations called meet and join, 

denoted by ∧ and ∨. Then L is called a lattice if the following axioms hold where a, b, c 
are elements in L: 

1) Commutative Law: - 
(a) a ∧ b = b ∧ a           (b) a ∨ b = b ∨ a 

2) Associative Law:- 
(a) (a ∧ b)∧ c = a ∧(b∧ c)           (b) (a ∨ b) ∨ c = a ∨ (b ∨ c) 

3) Absorption Law: - 
(a) a ∧ ( a ∨ b) = a           (b) a ∨ ( a ∧ b) = a 

Duality: 

The dual of any statement in a lattice (L,∧ ,∨ ) is defined to be a statement that is 
obtained by interchanging ∧ an ∨. 

For example, the dual of a ∧ (b ∨ a) = a ∨ a is           a ∨ (b ∧ a )= a ∧ a 

Bounded Lattices: 

A lattice L is called a bounded lattice if it has greatest element 1 and a least element 0. 

Example: 

1. The power set P(S) of the set S under the operations of intersection and union is 

a bounded lattice since ∅ is the least element of P(S) and the set S is the 

greatest element of P(S). 

2. The set of +ve integer I+ under the usual order of ≤ is not a bounded lattice since 

it has a least element 1 but the greatest element does not exist. 

Properties of Bounded Lattices: 

If L is a bounded lattice, then for any element a ∈ L, we have the following identities: 

1. a ∨ 1 = 1 

2. a ∧1= a 

3. a ∨0=a 

4. a ∧0=0 



115 
 

Theorem: Prove that every finite lattice L = {a1,a2,a3....an} is bounded. 

Proof: We have given the finite lattice: 

          L = {a1,a2,a3....an} 

Thus, the greatest element of Lattices L is a1∨ a2∨ a3∨....∨an. 

Also, the least element of lattice L is a1∧ a2∧a3∧....∧an. 

Since, the greatest and least elements exist for every finite lattice. Hence, L is bounded. 

Sub-Lattices: 

Consider a non-empty subset L1 of a lattice L. Then L1 is called a sub-lattice of L if 

L1 itself is a lattice i.e., the operation of L i.e., a ∨ b ∈ L1 and a ∧ b ∈ L1 whenever a ∈ 
L1 and b ∈ L1. 

Example: Consider the lattice of all +ve integers I+ under the operation of divisibility. 
The lattice Dn of all divisors of n > 1 is a sub-lattice of I+. 

Determine all the sub-lattices of D30 that contain at least four elements, 
D30={1,2,3,5,6,10,15,30}. 

Solution: The sub-lattices of D30 that contain at least four elements are as follows: 

1. {1, 2, 6, 30}          2. {1, 2, 3, 30} 
3. {1, 5, 15, 30}          4. {1, 3, 6, 30} 
5. {1, 5, 10, 30}          6. {1, 3, 15, 30} 
7. {2, 6, 10, 30} 

Isomorphic Lattices: 

Two lattices L1 and L2 are called isomorphic lattices if there is a bijection from L1 to 
L2 i.e., f: L1⟶ L2, such that f (a ∧ b) =f(a)∧ f(b) and f (a ∨ b) = f (a) ∨ f (b) 

Example: Determine whether the lattices shown in fig are isomorphic. 

Solution: The lattices shown in fig are isomorphic. Consider the mapping f = {(a, 1), (b, 

2), (c, 3), (d, 4)}.For example f (b ∧ c) = f (a) = 1. Also, we have f (b) ∧ f(c) = 2 ∧ 3 = 1 

 



116 
 

 

Distributive Lattice: 

A lattice L is called distributive lattice if for any elements a, b and c of L,it satisfies 
following distributive properties: 

1. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) 

2. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) 

If the lattice L does not satisfies the above properties, it is called a non-distributive 
lattice. 

Example: 

1. The power set P (S) of the set S under the operation of intersection and union is 

a distributive function. Since, 

                    a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) 

          and, also a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪c) for any sets a, b and c of P(S). 

2. The lattice shown in fig II is a distributive. Since, it satisfies the distributive 

properties for all ordered triples which are taken from 1, 2, 3, and 4. 
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Complements and complemented lattices: 

Let L be a bounded lattice with lower bound o and upper bound I. Let a be an element if 
L. An element x in L is called a complement of a if a ∨ x = I and a ∧ x = 0 

A lattice L is said to be complemented if L is bounded and every element in L has a 
complement. 

Example: Determine the complement of a and c in fig: 

 

Solution: The complement of a is d. Since, a ∨ d = 1 and a ∧ d = 0 

The complement of c does not exist. Since, there does not exist any element c such that 
c ∨ c'=1 and c ∧ c'= 0. 

Modular Lattice: 

A lattice (L, ∧,∨) is called a modular lattice if a ∨ (b ∧ c) = (a ∨ b) ∧ c whenever a ≤ c. 

Direct Product of Lattices: 

Let (L1 ∨1 ∧1)and (L2 ∨2 ∧2) be two lattices. Then (L, ∧,∨) is the direct product of lattices, 
where L = L1 x L2 in which the binary operation ∨(join) and ∧(meet) on L are such that 
for any (a1,b1)and (a2,b2) in L. 
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              (a1,b1)∨( a2,b2 )=(a1 ∨1 a2,b1 ∨2 b2) 
and       (a1,b1) ∧ ( a2,b2 )=(a1 ∧1 a2,b1 ∧2 b2). 

Example: Consider a lattice (L, ≤) as shown in fig. where L = {1, 2}. Determine the 
lattices (L2, ≤), where L2=L x L. 

 

Solution: The lattice (L2, ≤) is shown in fig: 
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Ordered set 

A lattice-ordered set is a poset  in which each two-element subset  has an 

infimum, denoted , and a supremum, denoted . There is a natural 

relationship between lattice-ordered sets and lattices. In fact, a lattice  is 

obtained from a lattice-ordered poset  by 

defining  and  for any . Also, from a lattice , 

one may obtain a lattice-ordered set  by setting  in  if and only if . 

One obtains the same lattice-ordered set  from the given lattice by 

setting  in  if and only if . (In other words, one may prove that for any 

lattice, , and for any two members  and  of ,  if and only if .) 

Lattice-ordered sets abound in mathematics and its applications, and many authors do 

not distinguish between them and lattices. From a universal algebraist's point of view, 

however, a lattice is different from a lattice-ordered set because lattices are algebraic 

structures that form an equational class or variety, but lattice-ordered sets are not 

algebraic structures, and therefore do not form a variety. 

A lattice-ordered set is bounded provided that it is a bounded poset, i.e., if it has an 

upper bound and a lower bound. For a bounded lattice-ordered set, the upper bound is 

frequently denoted 1 and the lower bound is frequently denoted 0. Given an 

element  of a bounded lattice-ordered set , we say that  is complemented 

in  if there exists an element  

 such that  and  

 

Hasse diagram of partially ordered set 

Consider a relation R on a set S satisfying the following properties: 

1. R is reflexive, i.e., xRx for every x ∈ S. 

2. R is antisymmetric, i.e., if xRy and yRx, then x = y. 

3. R is transitive, i.e., xRy and yRz, then xRz. 

Then R is called a partial order relation, and the set S together with partial order is 
called a partially order set or POSET and is denoted by (S, ≤). 

Example: 

1. The set N of natural numbers form a poset under the relation '≤' because firstly x 

≤ x, secondly, if x ≤ y and y ≤ x, then we have x = y and lastly if x ≤ y and y ≤ z, it 

implies x ≤ z for all x, y, z ∈ N. 

https://mathworld.wolfram.com/Lattice.html
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2. The set N of natural numbers under divisibility i.e., 'x divides y' forms a poset 

because x/x for every x ∈ N. Also if x/y and y/x, we have x = y. Again if x/y, y/z 

we have x/z, for every x, y, z ∈ N. 

3. Consider a set S = {1, 2} and power set of S is P(S). The relation of set inclusion 

⊆ is a partial order. Since, for any sets A, B, C in P (S), firstly we have A ⊆ A, 

secondly, if A ⊆B and B⊆A, then we have A = B. Lastly, if A ⊆B and B ⊆C,then 

A⊆C. Hence, (P(S), ⊆) is a poset. 

Elements of POSET: 

1. Maximal Element: An element a ∈ A is called a maximal element of A if there is 

no element in c in A such that a ≤ c. 

2. Minimal Element: An element b ∈ A is called a minimal element of A if there is 

no element in c in A such that c ≤ b. 

Example: Determine all the maximal and minimal elements of the poset whose Hasse 
diagram is shown in fig: 

 

 

Solution: The maximal elements are b and f. 

The minimal elements are d and e. 

Comparable Elements: 

Consider an ordered set A. Two elements a and b of set A are called comparable if 

         a ≤ b           or           b ≤ a 
             R                               R 



121 
 

Non-Comparable Elements: 

Consider an ordered set A. Two elements a and b of set A are called non-comparable if 
neither a ≤ b nor b ≤ a. 

Example: Consider A = {1, 2, 3, 5, 6, 10, 15, 30} is ordered by divisibility. Determine all 
the comparable and non-comparable pairs of elements of A. 

Solution: The comparable pairs of elements of A are: 
 
              {1, 2}, {1, 3}, {1, 5}, {1, 6}, {1, 10}, {1, 15}, {1, 30} 
              {2, 6}, {2, 10}, {2, 30} 
              {3, 6}, {3, 15}, {3, 30} 
              {5, 10}, {5, 15}, {5, 30} 
              {6, 30}, {10, 30}, {15, 30} 

The non-comparable pair of elements of A are: 
              {2, 3}, {2, 5}, {2, 15} 
              {3, 5}, {3, 10}, {5, 6}, {6, 10}, {6, 15}, {10, 15} 
 

Linearly Ordered Set: 

Consider an ordered set A. The set A is called linearly ordered set or totally ordered set, 
if every pair of elements in A is comparable. 

Example: The set of positive integers I+ with the usual order ≤ is a linearly ordered set. 

 

Consistent enumeration 

An enumeration is a complete, ordered listing of all the items in a collection. The term 
is commonly used in mathematics and computer science to refer to a listing of all of 
the elements of a set. The precise requirements for an enumeration (for example, 
whether the set must be finite, or whether the list is allowed to contain repetitions) 
depend on the discipline of study and the context of a given problem. 

Some sets can be enumerated by means of a natural ordering (such as 1, 2, 3, 4, ... 
for the set of positive integers), but in other cases it may be necessary to impose a 
(perhaps arbitrary) ordering. In some contexts, such as enumerative combinatorics, the 
term enumeration is used more in the sense of counting – with emphasis on 
determination of the number of elements that a set contains, rather than the production 
of an explicit listing of those elements. 

In combinatorics, enumeration means counting, i.e., determining the exact number of 

elements of finite sets, usually grouped into infinite families, such as the family of sets 
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each consisting of all permutations of some finite set. There are flourishing subareas in 

many branches of mathematics concerned with enumerating in this sense objects of 

special kinds. For instance, in partition enumeration and graph enumeration the 

objective is to count partitions or graphs that meet certain conditions. 

 

Isomorphic ordered set 

Let P be a set and ⊑ be a (partial) order on P.  Then P and ⊑ form a (partially) ordered 
set.  

If the order is total, so that no two elements of P are incomparable, then the ordered set 
is a totally ordered set.  Totally ordered sets are the ones people are first familiar 
with.  See Figure 1 for an example.  

A totally ordered set is also termed a chain.  

If the order is partial, so that P has two or more incomparable elements, then the 
ordered set is a partially ordered set.  See Figure 2 for an example.  

At the other extreme, if no two elements are comparable unless they are equal, then the 
ordered set is an antichain.  See Figure 3.  

On any set, = is an order; this is termed the discrete order on the set.  Any set ordered 
by = forms an antichain.  

It is common for people to refer briefly though inaccurately to an ordered set as 
an order, to a totally ordered set as a total order, and to a partially ordered set as 
a partial order.  It is usually clear by context whether "order" refers literally to 
an order (an order relation) or by synecdoche to an ordered set.  

Examples:  
 

1. The integers with ≤ form an ordered set (see Figure 1).  ≤ is a total order on the 
integers, so this ordered set is a chain.  
 

2. Any powerset with ⊆ forms an ordered set (see Figure 2).  This is a partially 

ordered set because not all subsets are related by ⊆, for example {a} || {b, r}.  
 

3. A set of unrelated items, ordered by =, is the discrete order on that set and forms 
an antichain (see Figure 3).  
 

4. The classes in java.util with the subclass relation form an ordered set (see Figure 
4).  This set is partially ordered, because not all classes in the set are related by 
the subclass relations (for example, Vector and HashSet are not related and are 
thus incomparable:  Vector || HashSet).  
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5. A set of binary strings with the prefix relation forms an ordered set (see Figure 
5).  This is set is partially ordered because not all strings are related by the prefix 
relation, for example 01 || 10.  
 

6. The (non-empty) conjunctions of any of the propositions p, q, and r, ordered by 

implication, form an ordered set (see Figure 6).  In this set, p∧q implies q, 
but p∧q neither implies nor is implied by q∧r, 
so p∧q and q∧r are incomparable (p∧q # q∧r) . 
  

7. The positive integers N with the divisibility relation form an ordered set.  The 
divisibility relation relates m to n if m divides n, written m | n.  Thus 2 | 6, and 3 | 6 
but not 4 | 6 (i.e., 4 and 6 are incomparable, written 4 || 6) because 4 does not 

divide 6.  And for any n∈N, 1 | n and n | n.  A part of this ordered set is shown 
in Figure 7.  

 

Well ordered set 

A set PP equipped with a binary relation ≤≤ that satisfies the following conditions: 

1. For any x,y∈Px,y∈P, either x≤yx≤y or y≤xy≤x. 

2. For any x,y∈Px,y∈P, if x≤yx≤y and y≤xy≤x, then x=yx=y. 

3. For any x,y,z∈Px,y,z∈P, if x≤yx≤y and y≤zy≤z, then x≤zx≤z. 

4. In any non-empty subset X⊆PX⊆P, there exists an element aa such 

that a≤xa≤x for all x∈Xx∈X. 

Thus, a well-ordered set is a totally ordered set satisfying the minimum condition. 

The concept of a well-ordered set was introduced by G. Cantor ([1]). An example of a 

well-ordered set is the naturally ordered set of natural numbers. On the other hand, the 

interval of real numbers [0,1][0,1] with the natural order is not well-ordered. Any subset 

of a well-ordered set is itself well-ordered. The Cartesian product of a finite number of 

well-ordered sets is well-ordered by the relation of lexicographic order. A totally ordered 

set is well-ordered if and only if it contains no subset that is anti-isomorphic to the set of 

natural numbers. 

The smallest element of a well-ordered set PP is denoted by zero (the symbol 00). For 

any element a∈Pa∈P, the set 
[0,a)=df{x∣x∈P,x<a}[0,a)=df{x∣x∈P,x<a} 

is called an initial segment of PP. For any element aa that is not the largest element 

in PP, there exists an element immediately following it; it is usually denoted by a+1a+1. 
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An element of a well-ordered set that has no element immediately preceding it is called 

a limit element. 

The Comparison Theorem.  

 

For any two well-ordered sets P1P1 and P2P2, one and only one of the following 

situations occurs: (a) P1P1 is isomorphic to P2P2; (b) P1P1 is isomorphic to an initial 

segment of P2P2; or (c) P2P2 is isomorphic to an initial segment of P1P1. 

If the axiom of choice is included in the axioms of set theory, it may be shown that it is 

possible to impose on any non-empty set an order relation that converts it into a well-

ordered set (i.e., any non-empty set can be well-ordered). This theorem, known 

as Zermelo‘s Well-Ordering Theorem, is in fact equivalent to the axiom of choice. 

Zermelo‘s Well-Ordering Theorem and the Comparison Theorem form the basis for the 

comparison between cardinalities of sets. Order types of well-ordered sets are 

called ordinal numbers. 
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Comments 

In the definition above, Condition (3) (the transitivity of the order relation) is in fact 

redundant: It follows from the existence of a least element in the subset {x,y,z}{x,y,z}. 

Sometimes, a well-ordered set is called a totally well-ordered set, reflecting the fact 

that the ordering is a total ordering or linear ordering. 
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Properties of lattices 

Man and nature both exploit the remarkable properties of cellular solids, by which we 
mean foams, meshes and microlattices. To the non-scientist, their image is that of soft, 
compliant, things: cushions, packaging and padding. To the food scientist they are 
familiar as bread, cake and desserts of the best kind: meringue, mousse and sponge. 
To those who study nature they are the structural materials of their subject: wood, coral, 
cancellous bone. And to the engineer they are of vast importance in building lightweight 
structures, for energy management, for thermal insulation, filtration and much more. 

When a solid is converted into a material with a foam-like structure, the single-valued 
properties of the solid are extended. By properties we mean stiffness, strength, thermal 
conductivity and diffusivity, electrical resistivity and so forth. And the extension is vast—
the properties can be changed by a factor of 1000 or more. Perhaps the most important 
concept in analysing the mechanical behaviour is that of the distinction between 
a stretch- and a bending-dominated structure. The first is exceptionally stiff and strong 
for a given mass; the second is compliant and, although not strong, it absorbs energy 
well when compressed. This paper summarizes a little of the way in which the 
mechanical properties of cellular solids are analysed and illustrates the range of 
properties offered by alternative configurations. 

 

Bounded lattices 

Bounded" and "boundary" are distinct concepts; for the latter see boundary (topology). 

A circle in isolation is a boundaryless bounded set, while the half plane is unbounded 

yet has a boundary. 

In mathematical analysis and related areas of mathematics, a set is called bounded if it 
is, in a certain sense, of finite size. Conversely, a set which is not bounded is 
called unbounded. The word 'bounded' makes no sense in a general topological space 
without a corresponding metric. 

A set S of real numbers is called bounded from above if there exists some real 
number k (not necessarily in S) such that k ≥ s for all s in S. The number k is called 
an upper bound of S. The terms bounded from below and lower bound are similarly 
defined. 

A set S is bounded if it has both upper and lower bounds. Therefore, a set of real 
numbers is bounded if it is contained in a finite interval. 
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Distributive lattices 

In mathematics, a distributive lattice is a lattice in which the operations of join and 
meet distribute over each other. The prototypical examples of such structures are 
collections of sets for which the lattice operations can be given by 
set union and intersection. Indeed, these lattices of sets describe the scenery 
completely: every distributive lattice is—up to isomorphism—given as such a lattice of 
sets. 

As in the case of arbitrary lattices, one can choose to consider a distributive 
lattice L either as a structure of order theory or of universal algebra. Both views and 
their mutual correspondence are discussed in the article on lattices. In the present 
situation, the algebraic description appears to be more convenient: 

A lattice (L,∨,∧) is distributive if the following additional identity holds for all x, y, 
and z in L: 

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). 

Viewing lattices as partially ordered sets, this says that the meet 
operation preserves non-empty finite joins. It is a basic fact of lattice theory that the 
above condition is equivalent to its dual:[1] 

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)   for all x, y, and z in L.[2] 

In every lattice, defining p≤q as usual to mean p∧q=p, the inequality x ∧ (y ∨ z) ≥ (x ∧ y) 
∨ (x ∧ z) holds as well as its dual inequality x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ z). A lattice is 
distributive if one of the converse inequalities holds, too. More information on the 
relationship of this condition to other distributivity conditions of order theory can be 
found in the article on distributivity (order theory). 

A morphism of distributive lattices is just a lattice homomorphism as given in the article 
on lattices, i.e. a function that is compatible with the two lattice operations. Because 
such a morphism of lattices preserves the lattice structure, it will consequently also 
preserve the distributivity (and thus be a morphism of distributive lattices). 

 

Complemented lattices 

Let LL be a bounded lattice (with 00 and 11), and a∈La∈L. A complement of aa is 
an element b∈Lb∈L such that 

a∧b=0a∧b=0 and a∨b=1a∨b=1. 

Remark. Complements may not exist. If LL is a non-trivial chain, then no element (other 
than 00 and 11) has a complement. This also shows that if aa is a complement of 
a non-trivial element bb, then aa and bb form an antichain. 

An element in a bounded lattice is complemented if it has a complement. 
A complemented lattice is a bounded lattice in which every element is complemented. 
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Remarks. 

 

In a complemented lattice, there may be more than one complement corresponding to 
each element. Two elements are said to be related, or perspective if they have a 
common complement. For example, the following lattice is complemented. 

 

\xymatrix &1 \ar @−[ld] \ar @−[d] \ar @−[rd]&a \ar @−[rd]&b \ar @−[d]&c \ar @−[ld]&0&\

xymatrix&1\ar@-[ld]\ar@-[d]\ar@-[rd]&a\ar@-

[rd]&b\ar@-[d]&c\ar@-[ld]&0& 

 

Note that none of the non-trivial elements have unique complements. Any two non-
trivial elements are related via the third. 

If a complemented lattice LL is a distributive lattice, then LL is uniquely 
complemented (in fact, a Boolean lattice). For if y1y1 and y2y2 are two complements 
of xx, then 

 

y2=1∧y2=(x∨y1)∧y2=(x∧y2)∨(y1∧y2)=0∨(y1∧y2)=y1∧y2.y2=1∧y2=(x∨y1)∧y2=(x∧y2)∨(y

1∧y2)=0∨(y1∧y2)=y1∧y2. 

 

Similarly, y1=y2∧y1y1=y2∧y1. So y2=y1y2=y1. 

In the category of complemented lattices, a morphism between two objects is 
a {0,1}{0,1}-lattice homomorphism; that is, a lattice homomorphism which 
preserves 00 and 11. 
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UNIT-III 

 

Introduction to defining language 

In mathematics, computer science, and linguistics, a formal language consists 
of words whose letters are taken from an alphabet and are well-formed according to a 
specific set of rules. 

The alphabet of a formal language consist of symbols, letters, or tokens that 
concatenate into strings of the language.[1] Each string concatenated from symbols of 
this alphabet is called a word, and the words that belong to a particular formal language 
are sometimes called well-formed words or well-formed formulas. A formal language is 
often defined by means of a formal grammar such as a regular grammar or context-free 
grammar, which consists of its formation rules. 

The field of formal language theory studies primarily the purely syntactical aspects of 
such languages—that is, their internal structural patterns. Formal language theory 
sprang out of linguistics, as a way of understanding the syntactic regularities of natural 
languages. In computer science, formal languages are used among others as the basis 
for defining the grammar of programming languages and formalized versions of subsets 
of natural languages in which the words of the language represent concepts that are 
associated with particular meanings or semantics. In computational complexity 
theory, decision problems are typically defined as formal languages, and complexity 
classes are defined as the sets of the formal languages that can be parsed by 
machines with limited computational power. In logic and the foundations of 
mathematics, formal languages are used to represent the syntax of axiomatic systems, 
and mathematical formalism is the philosophy that all of mathematics can be reduced to 
the syntactic manipulation of formal languages in this way. 

The first formal language is thought to be the one used by Gottlob Frege in 

his Begriffsschrift (1879), literally meaning "concept writing", and which Frege described 

as a "formal language of pure thought. 

Words over an alphabet 

An alphabet, in the context of formal languages, can be any set, although it often makes 
sense to use an alphabet in the usual sense of the word, or more generally a character 
set such as ASCII or Unicode. The elements of an alphabet are called its letters. An 
alphabet may contain an infinite number of elements;[note 1] however, most definitions in 
formal language theory specify alphabets with a finite number of elements, and most 
results apply only to them. 

A word over an alphabet can be any finite sequence (i.e., string) of letters. The set of all 
words over an alphabet Σ is usually denoted by Σ* (using the Kleene star). The length of 
a word is the number of letters it is composed of. For any alphabet, there is only one 
word of length 0, the empty word, which is often denoted by e, ε, λ or even Λ. 
By concatenation one can combine two words to form a new word, whose length is the 
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sum of the lengths of the original words. The result of concatenating a word with the 
empty word is the original word. 

In some applications, especially in logic, the alphabet is also known as 
the vocabulary and words are known as formulas or sentences; this breaks the 
letter/word metaphor and replaces it by a word/sentence metaphor. 

Definition 

A formal language L over an alphabet Σ is a subset of Σ*, that is, a set of words over 
that alphabet. Sometimes the sets of words are grouped into expressions, whereas 
rules and constraints may be formulated for the creation of 'well-formed expressions'. 

In computer science and mathematics, which do not usually deal with natural 
languages, the adjective "formal" is often omitted as redundant. 

While formal language theory usually concerns itself with formal languages that are 
described by some syntactical rules, the actual definition of the concept "formal 
language" is only as above: a (possibly infinite) set of finite-length strings composed 
from a given alphabet, no more and no less. In practice, there are many languages that 
can be described by rules, such as regular languages or context-free languages. The 
notion of a formal grammar may be closer to the intuitive concept of a "language," one 
described by syntactic rules. By an abuse of the definition, a particular formal language 
is often thought of as being equipped with a formal grammar that describes it. 

 

Kleene Closure 

In mathematical logic and computer science, the Kleene star (or Kleene 
operator or Kleene closure) is a unary operation, either on sets of strings or on sets of 
symbols or characters. In mathematics it is more commonly known as the free 
monoid construction. The application of the Kleene star to a set V is written as V*. It is 
widely used for regular expressions, which is the context in which it was introduced 
by Stephen Kleene to characterize certain automata, where it means "zero or more". 

1. If V is a set of strings, then V* is defined as the smallest superset of V that 
contains the empty string ε and is closed under the string concatenation 
operation. 

2. If V is a set of symbols or characters, then V* is the set of all strings over symbols 
in V, including the empty string ε. 

The set V* can also be described as the set of finite-length strings that can be generated 
by concatenating arbitrary elements of V, allowing the use of the same element multiple 

times. If V is either the empty set ∅ or the singleton set {ε}, then V* = {ε}; if V is any 
other finite set or countably infinite set, then V* is a countably infinite set.[1] As a 
consequence, each formal language over a finite or countably infinite alphabet is 
countable. 

The operators are used in rewrite rules for generative grammars. 

https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Formal_language#Words_over_an_alphabet
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Regular_language
https://en.wikipedia.org/wiki/Context-free_language
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Mathematical_logic
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Unary_operation
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Free_monoid
https://en.wikipedia.org/wiki/Free_monoid
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Stephen_Kleene
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Superset
https://en.wikipedia.org/wiki/Empty_string
https://en.wikipedia.org/wiki/Closure_(mathematics)
https://en.wikipedia.org/wiki/Concatenation
https://en.wikipedia.org/wiki/Concatenation
https://en.wikipedia.org/wiki/Empty_set
https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Countably_infinite_set
https://en.wikipedia.org/wiki/Kleene_star#cite_note-1
https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Rewrite_rule
https://en.wikipedia.org/wiki/Generative_grammar
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Definition and notation 

Given a set V define 

V0 = {ε} (the language consisting only of the empty string), 

V1 = V 

and define recursively the set 

Vi+1 = { wv : w ∈ Vi and v ∈ V } for each i > 0. 

If V is a formal language, then Vi, the i-th power of the set V, is a shorthand for 
the concatenation of set V with itself i times. That is, Vi can be understood to be the set 
of all strings that can be represented as the concatenation of i strings in V. 

The definition of Kleene star on V is[2] 

 

This means that the Kleene star operator is an idempotent unary operator: (V*)* = V* for 
any set V of strings or characters, as (V*)i = V* for every i≥1. 

 

Arithmetic expressions 

An arithmetic expression is an expression that results in a numeric value. There are two 
kinds of numeric values, integers (whole numbers), and real or floating point numbers 
(numbers containing a decimal point). 

The simplest arithmetic expressions are literals (the number itself, written with digits) 
and variables (named values): 

Example Description 

12 A literal integer, representing the number 12. 

-5 A literal integer, representing the number negative 5. 

-5.0 A literal real, representing the number negative 5. 

5.0E4 A literal real, representing the number 50000. 

https://en.wikipedia.org/wiki/Concatenation#Concatenation_of_sets_of_strings
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Kleene_star#cite_note-2
https://en.wikipedia.org/wiki/Idempotent
https://en.wikipedia.org/wiki/Unary_operator
https://www.cis.upenn.edu/~matuszek/General/JavaSyntax/expressions.html
https://www.cis.upenn.edu/~matuszek/General/JavaSyntax/variables.html
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count 
A variable. If it was declared as int count, it will hold an integer value; but if 

declared as double count, it will hold a real value. 

More complex arithmetic expressions can be formed by connecting literals and 
variables with one of the arithmetic operators: 

Operator Meaning 

+ Add. 

- Subtract. 

* Multiply (it's difficult to type the usual multiplication symbol). 

/ 

Divide (it's difficult to type the usual division symbol). 

Division of two integer values will give an integer result (any fractional part is 

just discarded). For example, 14/5 gives 2. This is called integer division. 

% 

Mod (remainder). 

Used for integers only, this operation gives the remainder of a division; for 

example, 14%5 gives 4. The sign (positive or negative) of the result is the 

same as the sign of the first number. 

Parentheses may be used to control the order in which the operators are applied. If you 
don't use parentheses, operations with higher precedence are done first. 

Notes: 

 If you mix integers and reals in an operation, the result is a real. For 
example, 3*5.0 is 15.0, not 15. 
 

 You can assign an integer value to a real variable. For 
example, double x=5 sets x to 5.0. 
 

 You cannot assign a real value to an integer variable. For example, 
both int i=5.8 and int i=5.0 are illegal. This is to protect you from accidentally 

https://www.cis.upenn.edu/~matuszek/General/JavaSyntax/parentheses.html
https://www.cis.upenn.edu/~matuszek/General/JavaSyntax/precedence.html
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losing the fractional part.However, if you use a cast to reassure Java that you 
really mean it, then it's legal. For example, int i=(int)5.8 is legal,and gives i the 
value 5. 
 

 By far the most commonly used numeric types are int and double. However, 
there are other numeric primitive types. 

 

Chomsky Hierarchy 

Any language is a structured medium of communication whether it is a spoken or written 
natural language, sign or coded language, or a formal programming language. 
Languages are characterised by two basic elements – syntax (grammatical rules) and 
semantics (meaning). In some languages, the meaning might vary depending upon a 
third factor called context of usage. 

Depending on restrictions and complexity present in the grammar, languages find a 
place in the hierarchy of formal languages. Noam Chomsky, celebrated American 
linguist cum cognitive scientist, defined this hierarchy in 1956 and hence it's 
called Chomsky Hierarchy. 

Although his concept is quite old, there's renewed interest because of its relevance to 
Natural Language Processing. Chomsky hierarchy helps us answer questions like ―Can 
a natural language like English be described (‗parsed‘, ‗compiled‘) with the same 
methods as used for formal/artificial (programming) languages in computer science?‖ 

Discussion 

 

 

https://www.cis.upenn.edu/~matuszek/General/JavaSyntax/primitive-types.html
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 There are 4 levels – Type-3, Type-2, Type-1, Type-0. With every level, the grammar 

becomes less restrictive in rules, but more complicated to automate. Every level is also 

a subset of the subsequent level. 

 Type-3: Regular Grammar - most restrictive of the set, they generate regular languages. 

They must have a single non-terminal on the left-hand-side and a right-hand-side 

consisting of a single terminal or single terminal followed by a single non-terminal. 

 Type-2: Context-Free Grammar - generate context-free languages, a category of 

immense interest to NLP practitioners. Here all rules take the form A → β, where A is a 

single non-terminal symbol and β is a string of symbols. 

 Type-1: Context-Sensitive Grammar - the highest programmable level, they generate 

context-sensitive languages. They have rules of the form α A β → α γ β with A as a non-

terminal and α, β, γ as strings of terminals and non-terminals. Strings α, β may be 

empty, but γ must be nonempty. 

 Type-0: Recursively enumerable grammar - are too generic and unrestricted to describe 

the syntax of either programming or natural languages. 

 What are the common terms and definitions used while studying Chomsky 

Hierarchy? 

 Symbol - Letters, digits, single characters. Example - A,b,3 

 String - Finite sequence of symbols. Example - Abcd, x12 

 Production Rules - Set of rules for every grammar describing how to form strings from 

the language that are syntactically valid. 

 Terminal - Smallest unit of a grammar that appears in production rules, cannot be 

further broken down. 

 Non-terminal - Symbols that can be replaced by other non-terminals or terminals by 

successive application of production rules. 

 Grammar - Rules for forming well-structured sentences and the words that make up 

those sentences in a language. A 4-tuple G = (V , T , P , S) such that V = Finite non-
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empty set of non-terminal symbols, T = Finite set of terminal symbols, P = Finite non-

empty set of production rules, S = Start symbol 

 Language - Set of strings conforming to a grammar. Programming languages have finite 

strings, most natural languages are seemingly infinite. Example – Spanish, Python, 

Hexadecimal code. 

 Automaton - Programmable version of a grammar governed by pre-defined production 

rules. It has clearly set computing requirements of memory and processing. Example – 

Regular automaton for regex. 
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 Under Type-3 grammar, we don't classify entire languages as the production rules are 

restrictive. However, constructs inside a language describable by regular 

expressions come under this type. 

For instance, rule for naming an identifier in a programming language – regular 

expression with any combination of case-insensive letters, some special characters and 

numbers, but must start with a letter. 

Context-free languages classified as Type-2 are capable of handling an important 

language construct called nested dependencies. English example – Recursive presence 

of ―If <phrase> then <phrase>‖ – ―If it rains today and if I don‘t carry an umbrella, then 

I'd get drenched‖. For programming languages, the matching parentheses of functions 

or loops get covered by this grammar. 

In Type-1 languages, placing the restriction on productions α → β of a phrase structure 

that β be at least as long as α, they become context sensitive. They permit replacement 

of α by β only in a ‗context‘, [context] α [context] → [context] β [context]. 

Finally, Type-0 languages have no restrictions on their grammar and may loop forever. 

They don‘t have an algorithm enumerating all the elements. 

 What are the type of Automaton that recognizes the grammar in each level? 

 Type-3: Finite-State Automata - To compute constructs for a regular language, the most 

important consideration is that there is no memory requirement. Think of a single 

purpose vending machine for platform tickets or a lift algorithm. The automaton knows 

the present state and next permissible states, but does not ‗remember‘ past steps. 

 Type-2: Push-Down Automata - In order to match nested dependencies, this automaton 

requires a one-ended memory stack. For instance, to match the number of ‗if‘ and ‗else‘ 

phrases, the automaton needs to ‗remember‘ the latest occurring ‗if‘. Only then it can 

find the corresponding ‗else‘. 
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 Type-1: Linear-Bounded Automata - is a form of a restricted Turing machine which 

instead of being unlimited, is bounded by some computable linear function. The 

advantage of this automaton is that its memory requirement (RAM upper limit) is 

predictable even if the execution is recursive in parts. 

 Type-0: Turing Machine - Non-computable functions exist in Mathematics and 

Computer Science. The Turing machine however allows representing even such 

functions as a sequence of discrete steps. Control is finite even if data might be 

seemingly infinite. 

 Can you give a quick example for each type of grammar/language? 

 Type-3: Regex to define tokens such as identifiers, language keywords in programming 

languages. A coin vending machine that accepts only 1-Rupee, 2-Rupee and 5-Rupee 

coins has a regular language with only three words – 1, 2, 5. 

 Type-2: Statement blocks in programming languages such as functions in parentheses, 

If-Else, for loops. In natural language, nouns and their plurals can be recognized 

through one NFA, verbs and their different forms can be recognized through 

another NFA, and then combined. Singular (The girl runs home –> Girl + Runs). Plural 

(The girls run home –> Girls + Run) 

 Type-1: Though most language constructs in natural language are context-free, in some 

situations linear matching of tokens has to be done, such as - "The square roots of 16, 9 

and 4 are 4, 3 and 2, respectively." Here 16 is to be matched with 4, 9 is matched with 

3, and 4 is matched with 2. 

 Type-0: A language with no restrictions is not conducive to communication or 

automation. Hence there are no common examples for this type. However, some 

mathematical seemingly unsolvable equations are expressed in this form. 

 In which level of the hierarchy do formal programming languages fall? 

Reading a text file containing a high-level language program and compiling it as per its 

syntax is done in two steps. 
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Finite state models associated with Type-3 grammar are used for performing the first 

step of lexical analysis. Raw text is aggregated into keywords, strings, numerical 

constants and identifiers in this step. 

In the second step, to parse the program constructs of any high level language 

according to its syntax, a Context-Free Grammar is required. Usually these grammars 

are specified in Backus-Naur Form (BNF). 

For example, to build a grammar for IF statement, grammar would begin with a non-

terminal statement S. Rules will be of the form: 

S → IF-STATEMENT 

IF-STATEMENT → if CONDITION then BLOCK endif 

BLOCK → STATEMENT | BLOCK; 

Conventionally, all high-level programming languages can be covered under the Type-2 

grammar in Chomsky‘s hierarchy. 

Python language has a unique feature of being white-space sensitive. To make this 

feature fit into a conventional CFG, Python uses two additional tokens ‗INDENT‘ and 

‗DEDENT‘ to represent the line indentations. 

However, just syntactic analysis does not guarantee that the language will be entirely 

‗understood‘. Semantics need to match too. 

 Where can we place natural languages in the hierarchy? 

Natural languages are an infinite set of sentences constructed out of a finite set of 

characters. Words in a sentence don‘t have defined upper limits either. When natural 

languages are reverse engineered into their component parts, they get broken down 

into 4 parts - syntax, semantics, morphology, phonology. 
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Tokenising words and identifying nested dependencies work as explained in the 

previous section. 

Part-of-Speech Tagging is a challenge. ―He runs 20 miles every day‖ and ―The batsman 

scored 150 runs in one day‖ – the same word ‗runs‘ becomes a noun and verb. Finite 

state grammars can be used for resolving such lexical ambiguity. 

Identifying cases (subjective - I, possessive - Mine, objective - Me, etc) for nouns varies 

across languages. Old English has 5, Modern English – 3, Sanskrit and Tamil - clearly 

defined 8 cases. Each case also has interrogative forms. Clear definition of cases 

enables free word order. The CFG defined for these languages take care of this. 

Natural languages are believed to be at least context-free. However, Dutch and Swiss 

German contain grammatical constructions with cross-serial dependencies which make 

them context sensitive. 

Languages having clear and singular source text of grammar are easier to classify. 

 Are there any exceptional cases in natural languages that make its classification 

ambiguous? 

NLP practitioners have successfully managed to assign a majority of natural language 

aspects to the regular and CFG category. However, some aspects don't easily conform 

to a particular grammar and require special handling. 

 Structural ambiguity – Example ‗I saw the man with the telescope‘. A CFG can assign 

two or more phrase structures (―parse trees‖) to one and the same sequence of terminal 

symbols (words or word classes). 

 Ungrammatical speech – Humans often talk in sentences that are incorrect 

grammatically. Missing words sometimes are implied in a sentence, not uttered 

explicitly. So decoding such sentences is a huge challenge as they don't qualify as per 

any defined grammar, but a native speaker can easily understand them. 
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 Sarcasm or proverb usage – When we say something but mean something entirely 

different. Here the semantic analysis becomes critical. We don‘t build grammars for 

these cases, we just prepare an exhaustive reference data set. 

 Mixed language use – Humans often mix words from multiple languages. So computing 

systems need to identify all the constituent language words present in the sentence and 

then assign them to their respective grammars. 

 

Regular expressions 

A Regular Expression can be recursively defined as follows − 

 ε is a Regular Expression indicates the language containing an empty string. (L 
(ε) = {ε}) 

 φ is a Regular Expression denoting an empty language. (L (φ) = { }) 

 x is a Regular Expression where L = {x} 

 If X is a Regular Expression denoting the language L(X) and Y is a Regular 
Expression denoting the language L(Y), then 

o X + Y is a Regular Expression corresponding to the language L(X) ∪ 
L(Y) where L(X+Y) = L(X) ∪ L(Y). 

o X . Y is a Regular Expression corresponding to the language L(X) . 
L(Y) where L(X.Y) = L(X) . L(Y) 

o R* is a Regular Expression corresponding to the 
language L(R*)where L(R*) = (L(R))* 

 If we apply any of the rules several times from 1 to 5, they are Regular 
Expressions. 

Some RE Examples 

Regular 
Expressions 

Regular Set 

(0 + 10*) L = { 0, 1, 10, 100, 1000, 10000, … } 

(0*10*) L = {1, 01, 10, 010, 0010, …} 
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(0 + ε)(1 + ε) L = {ε, 0, 1, 01} 

(a+b)* Set of strings of a‘s and b‘s of any length including the null string. 
So L = { ε, a, b, aa , ab , bb , ba, aaa…….} 

(a+b)*abb Set of strings of a‘s and b‘s ending with the string abb. So L = 
{abb, aabb, babb, aaabb, ababb, …………..} 

(11)* Set consisting of even number of 1‘s including empty string, So L= 
{ε, 11, 1111, 111111, ……….} 

(aa)*(bb)*b Set of strings consisting of even number of a‘s followed by odd 
number of b‘s , so L = {b, aab, aabbb, aabbbbb, aaaab, aaaabbb, 
…………..} 

(aa + ab + ba + 
bb)* 

String of a‘s and b‘s of even length can be obtained by 
concatenating any combination of the strings aa, ab, ba and bb 
including null, so L = {aa, ab, ba, bb, aaab, aaba, …………..} 

 

Generalized Transition graph 

There are two methods to convert FA to regular expression – 
 
1. State Elimination Method – 
 
 Step 1 – 

 
If the start state is an accepting state or has transitions in, add a new non-
accepting start state and add an €-transition between the new start state and the 
former start state. 
 

 Step 2 – 
 
If there is more than one accepting state or if the single accepting state has 
transitions out, add a new accepting state, make all other states non-accepting, 
and add an €-transition from each former accepting state to the new accepting 
state. 
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 Step 3 – 
 
For each non-start non-accepting state in turn, eliminate the state and update 
transitions accordingly. 
 

Example :- 

 

 

 

Solution :- 

Step 1 
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Step 2 

 

 

 

Step 3 
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2. Arden‟s Theorem – Let P and Q be 2 regular expressions. If P does not contain null 
string, then following equation in R, viz R = Q + RP, Has a unique solution by R = QP* 
 
Assumptions – 
 
 The transition diagram should not have €-moves. 
 It must have only one initial state. 

 
Using Arden‟s Theorem to find Regular Expression of Deterministic Finite 
automata – 
 

1. For getting the regular expression for the automata we first create equations of the 
given form for all the states 
q1 = q1w11 +q2w21 +…+qnwn1 +€ (q1 is the initial state) 
q2 = q1w12 +q2w22 +…+qnwn2 
. 
. 
. 
qn = q1w1n +q2w2n +…+qnwnn 
 
wij is the regular expression representing the set of labels of edges from qi to qj 
Note – For parallel edges there will be that many expressions for that state in the 
expression. 
 

2. Then we solve these equations to get the equation for qi in terms of wij and that 
expression is the required solution, where qi is a final state. 
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Example :- 
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Solution :- 
 
Here the initial state is q2 and the final state is q1. 
The equations for the three states q1, q2, and q3 are as follows ? 
q1 = q1a + q3a + € ( € move is because q1 is the initial state) 
q2 = q1b + q2b + q3b 
q3 = q2a 
Now, we will solve these three equations ? 
q2 = q1b + q2b + q3b 
= q1b + q2b + (q2a)b (Substituting value of q3) 
= q1b + q2(b + ab) 
= q1b (b + ab)* (Applying Arden‘s Theorem) 
q1 = q1a + q3a + € 
= q1a + q2aa + € (Substituting value of q3) 
= q1a + q1b(b + ab*)aa + € (Substituting value of q2) 
= q1(a + b(b + ab)*aa) + € 
= € (a+ b(b + ab)*aa)* 
= (a + b(b + ab)*aa)* 
Hence, the regular expression is (a + b(b + ab)*aa)*. 
 
GATE CS Corner Questions 
 
Practicing the following questions will help you test your knowledge. All questions have 
been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended 
that you practice them. 
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UNIT-IV 

 

Conversion of regular expression to Finite Automata 

In this article, we will see some popular regular expressions and how we can convert 
them to finite automata. 

 Even number of a‟s : The regular expression for even number of a‘s 
is (b|ab*ab*)*. We can construct a finite automata as shown in Figure 1. 
 

 
 
The above automata will accept all strings which have even number of a‘s. For zero 
a‘s, it will be in q0 which is final state. For one ‗a‘, it will go from q0 to q1 and the 
string will not be accepted. For two a‘s at any positions, it will go from q0 to q1 for 
1st ‗a‘ and q1 to q0 for second ‗a‘. So, it will accept all strings with even number of 
a‘s. 

 String with „ab‟ as substring : The regular expression for strings with ‗ab‘ as 
substring is (a|b)*ab(a|b)*. We can construct finite automata as shown in Figure 2. 
 

 



149 
 

The above automata will accept all string which have ‗ab‘ as substring. The automata will 
remain in initial state q0 for b‘s. It will move to q1 after reading ‗a‘ and remain in same 
state for all ‗a‘ afterwards. Then it will move to q2 if ‗b‘ is read. That means, the string has 
read ‗ab‘ as substring if it reaches q2. 

String with count of „a‟ divisible by 3 : The regular expression for strings with count 
of a divisible by 3 is {a3n | n >= 0}. We can construct automata as shown in Figure 3. 
 

 

 
 
 
The above automata will accept all string of form a3n. The automata will remain in 
initial state q0 for ɛ and it will be accepted. For string ‗aaa‘, it will move from q0 to q1 
then q1 to q2 and then q2 to q0. For every set of three a‘s, it will come to q0, hence 
accepted. Otherwise, it will be in q1 or q2, hence rejected. 
 
Note : If we want to design a finite automata with number of a‘s as 3n+1, same 
automata can be used with final state as q1 instead of q0. 
If we want to design a finite automata with language {akn | n >= 0}, k states are 
required. We have used k = 3 in our example. 
 
Binary numbers divisible by 3 : The regular expression for binary numbers which 
are divisible by three is (0|1(01*0)*1)*. The examples of binary number divisible by 
3 are 0, 011, 110, 1001, 1100, 1111, 10010 etc. The DFA corresponding to binary 
number divisible by 3 can be shown in Figure 4. 
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The above automata will accept all binary numbers divisible by 3. For 1001, the automata 
will go from q0 to q1, then q1 to q2, then q2 to q1 and finally q2 to q0, hence accepted. 
For 0111, the automata will go from q0 to q0, then q0 to q1, then q1 to q0 and finally q0 to 
q1, hence rejected. 

 

String with regular expression (111 + 11111)* : The string accepted using this regular 
expression will have 3, 5, 6(111 twice), 8 (11111 once and 111 once), 9 (111 thrice), 10 
(11111 twice) and all other counts of 1 afterwards. The DFA corresponding to given 
regular expression is given in Figure 5. 

 

 
  
 
Question : What will be the minimum number of states for strings with odd number of 
a‘s? 
Solution : The regular expression for odd number of a is b*ab*(ab*ab*)* and 
corresponding automata is given in Figure 6 and minimum number of states are 2. 
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TOC | Designing Deterministic Finite Automata (Set 1) 
  
This article has been contributed by Sonal Tuteja. 
  
Please write comments if you find anything incorrect, or you want to share more 
information about the topic discussed above 

Attention reader! Don‘t stop learning now. Get hold of all the important CS Theory 
concepts for SDE interviews with the CS Theory Course at a student-friendly price and 
become industry ready. 
 

NFA 

o NFA stands for non-deterministic finite automata. It is easy to construct an NFA 

than DFA for a given regular language. 

o The finite automata are called NFA when there exist many paths for specific input 

from the current state to the next state. 

o Every NFA is not DFA, but each NFA can be translated into DFA. 

o NFA is defined in the same way as DFA but with the following two exceptions, it 

contains multiple next states, and it contains ε transition. 

In the following image, we can see that from state q0 for input a, there are two next 
states q1 and q2, similarly, from q0 for input b, the next states are q0 and q1. Thus it is 
not fixed or determined that with a particular input where to go next. Hence this FA is 
called non-deterministic finite automata. 

 

https://www.geeksforgeeks.org/toc-designing-deterministic-finite-automata-set-1/
https://practice.geeksforgeeks.org/courses/SDE-theory?vC=1
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Formal definition of NFA: 

NFA also has five states same as DFA, but with different transition function, as shown 
follows: 

δ: Q x ∑ →2Q 

where, 

1. Q: finite set of states   

 

2. ∑: finite set of the input symbol  

  

3. q0: initial state    

 

4. F: final state   

 

5. δ: Transition function   

Graphical Representation of an NFA 

An NFA can be represented by digraphs called state diagram. In which: 

1. The state is represented by vertices. 

 

2. The arc labeled with an input character show the transitions. 

 

3. The initial state is marked with an arrow. 

 

4. The final state is denoted by the double circle. 

Example 1: 

 

1. Q = {q0, q1, q2}   

 

2. ∑ = {0, 1}   

 

3. q0 = {q0}   

 

4. F = {q2}   
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Solution: 

Transition diagram: 

 

Transition Table: 

Present State Next state for Input 0 Next State of Input 1 

→q0 q0, q1 q1 

q1 q2 q0 

*q2 q2 q1, q2 

 

In the above diagram, we can see that when the current state is q0, on input 0, the next 
state will be q0 or q1, and on 1 input the next state will be q1. When the current state is 
q1, on input 0 the next state will be q2 and on 1 input, the next state will be q0. When 
the current state is q2, on 0 input the next state is q2, and on 1 input the next state will 
be q1 or q2. 

Example 2: 

NFA with ∑ = {0, 1} accepts all strings with 01. 

Solution: 
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Transition Table: 

Present State Next state for Input 0 Next State of Input 1 

→q0 q1 ε 

q1 ε q2 

*q2 q2 q2 

Example 3: 

NFA with ∑ = {0, 1} and accept all string of length atleast 2. 

Solution: 
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Transition Table: 

Present State Next state for Input 0 Next State of Input 1 

→q0 q1 q1 

q1 q2 q2 

*q2 ε ε 

 

DFA 

DFA (Deterministic finite automata) 

o DFA refers to deterministic finite automata. Deterministic refers to the 

uniqueness of the computation. The finite automata are called deterministic finite 

automata if the machine is read an input string one symbol at a time. 

o In DFA, there is only one path for specific input from the current state to the next 

state. 

o DFA does not accept the null move, i.e., the DFA cannot change state without 

any input character. 

o DFA can contain multiple final states. It is used in Lexical Analysis in Compiler. 

In the following diagram, we can see that from state q0 for input a, there is only one 
path which is going to q1. Similarly, from q0, there is only one path for input b going to 
q2. 
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Formal Definition of DFA 

A DFA is a collection of 5-tuples same as we described in the definition of FA. 

1. Q: finite set of states   

 

2. ∑: finite set of the input symbol   

 

3. q0: initial state    

 

4. F: final state   

 

5. δ: Transition function   

Transition function can be defined as: 

1. δ: Q x ∑→Q   

Graphical Representation of DFA 

A DFA can be represented by digraphs called state diagram. In which: 

1. The state is represented by vertices. 

 

2. The arc labeled with an input character show the transitions. 

 

3. The initial state is marked with an arrow. 

 

4. The final state is denoted by a double circle. 

Example 1: 

 

1. Q = {q0, q1, q2}  

  

2. ∑ = {0, 1}   

 

3. q0 = {q0}   

 

4. F = {q2}   
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Solution: 

Transition Diagram: 

 
 

Transition Table: 

Present State Next state for Input 0 Next State of Input 1 

→q0 q0 q1 

q1 q2 q1 

*q2 q2 q2 

Example 2: 

DFA with ∑ = {0, 1} accepts all starting with 0. 

Solution: 
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Explanation: 

o In the above diagram, we can see that on given 0 as input to DFA in state q0 the 

DFA changes state to q1 and always go to final state q1 on starting input 0. It can 

accept 00, 01, 000, 001....etc. It can't accept any string which starts with 1, 

because it will never go to final state on a string starting with 1. 

Example 3: 

DFA with ∑ = {0, 1} accepts all ending with 0. 

Solution: 

 
 

Explanation: 

In the above diagram, we can see that on given 0 as input to DFA in state q0, the DFA 
changes state to q1. It can accept any string which ends with 0 like 00, 10, 110, 
100....etc. It can't accept any string which ends with 1, because it will never go to the 
final state q1 on 1 input, so the string ending with 1, will not be accepted or will be 
rejected. 

 

Conversion of NFA to DFA 

In this section, we will discuss the method of converting NFA to its equivalent DFA. In 
NFA, when a specific input is given to the current state, the machine goes to multiple 
states. It can have zero, one or more than one move on a given input symbol. On the 
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other hand, in DFA, when a specific input is given to the current state, the machine goes 
to only one state. DFA has only one move on a given input symbol. 

Let, M = (Q, ∑, δ, q0, F) is an NFA which accepts the language L(M). There should be 
equivalent DFA denoted by M' = (Q', ∑', q0', δ', F') such that L(M) = L(M'). 

Steps for converting NFA to DFA: 

Step 1: Initially Q' = ϕ 

Step 2: Add q0 of NFA to Q'. Then find the transitions from this start state. 

Step 3: In Q', find the possible set of states for each input symbol. If this set of states is 
not in Q', then add it to Q'. 

Step 4: In DFA, the final state will be all the states which contain F(final states of NFA) 

Example 1: 

Convert the given NFA to DFA. 

 
 

Solution: For the given transition diagram we will first construct the transition table. 

State 0 1 

→q0 q0 q1 

q1 {q1, q2} q1 



160 
 

*q2 q2 {q1, q2} 

Now we will obtain δ' transition for state q0. 

1. δ'([q0], 0) = [q0]   

2. δ'([q0], 1) = [q1]   

The δ' transition for state q1 is obtained as: 

1. δ'([q1], 0) = [q1, q2]       (new state generated)   

2. δ'([q1], 1) = [q1]   

The δ' transition for state q2 is obtained as: 

1. δ'([q2], 0) = [q2]   

2. δ'([q2], 1) = [q1, q2]   

Now we will obtain δ' transition on [q1, q2]. 

1. δ'([q1, q2], 0) = δ(q1, 0) ∪ δ(q2, 0)   

2.                       = {q1, q2} ∪ {q2}   

3.                       = [q1, q2]   

4. δ'([q1, q2], 1) = δ(q1, 1) ∪ δ(q2, 1)   

5.                       = {q1} ∪ {q1, q2}   

6.                       = {q1, q2}   

7.                       = [q1, q2]   

The state [q1, q2] is the final state as well because it contains a final state q2. The 
transition table for the constructed DFA will be: 

State 0 1 

→[q0] [q0] [q1] 

[q1] [q1, q2] [q1] 

*[q2] [q2] [q1, q2] 

*[q1, q2] [q1, q2] [q1, q2] 
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The Transition diagram will be: 

 
 

The state q2 can be eliminated because q2 is an unreachable state. 

Example 2: 

Convert the given NFA to DFA. 

 
 

Solution: For the given transition diagram we will first construct the transition table. 
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State 0 1 

→q0 {q0, q1} {q1} 

*q1 ϕ {q0, q1} 

Now we will obtain δ' transition for state q0. 

1. δ'([q0], 0) = {q0, q1}   

2.                = [q0, q1]       (new state generated)   

3. δ'([q0], 1) = {q1} = [q1]   

The δ' transition for state q1 is obtained as: 

1. δ'([q1], 0) = ϕ   

2. δ'([q1], 1) = [q0, q1]   

Now we will obtain δ' transition on [q0, q1]. 

1. δ'([q0, q1], 0) = δ(q0, 0) ∪ δ(q1, 0)   

2.                       = {q0, q1} ∪ ϕ   

3.                       = {q0, q1}   

4.                       = [q0, q1]   

Similarly, 

1. δ'([q0, q1], 1) = δ(q0, 1) ∪ δ(q1, 1)   

2.                       = {q1} ∪ {q0, q1}   

3.                       = {q0, q1}   

4.                       = [q0, q1]   

As in the given NFA, q1 is a final state, then in DFA wherever, q1 exists that state 
becomes a final state. Hence in the DFA, final states are [q1] and [q0, q1]. Therefore set 
of final states F = {[q1], [q0, q1]}. 

The transition table for the constructed DFA will be: 
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State 0 1 

→[q0] [q0, q1] [q1] 

*[q1] ϕ [q0, q1] 

*[q0, q1] [q0, q1] [q0, q1] 

The Transition diagram will be: 

 
 

Even we can change the name of the states of DFA. 

Suppose 

1. A = [q0]   

2. B = [q1]   

3. C = [q0, q1]   
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With these new names the DFA will be as follows: 

 

 

 

Optimizing DFA 

To optimize the DFA you have to follow the various steps. These are as follows: 

Step 1: Remove all the states that are unreachable from the initial state via any set of 
the transition of DFA. 

Step 2: Draw the transition table for all pair of states. 

Step 3: Now split the transition table into two tables T1 and T2. T1 contains all final 
states and T2 contains non-final states. 

Step 4: Find the similar rows from T1 such that: 

1. δ (q, a) = p   

2. δ (r, a) = p   
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That means, find the two states which have same value of a and b and remove one of 
them. 

Step 5: Repeat step 3 until there is no similar rows are available in the transition table 
T1. 

Step 6: Repeat step 3 and step 4 for table T2 also. 

Step 7: Now combine the reduced T1 and T2 tables. The combined transition table is 
the transition table of minimized DFA. 

Example 
 

 

Solution: 

Step 1: In the given DFA, q2 and q4 are the unreachable states so remove them. 

Step 2: Draw the transition table for rest of the states. 
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Step 3: 

Now divide rows of transition table into two sets as: 

1. One set contains those rows, which start from non-final sates: 

 

2. Other set contains those rows, which starts from final states. 
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Step 4: Set 1 has no similar rows so set 1 will be the same. 

Step 5: In set 2, row 1 and row 2 are similar since q3 and q5 transit to same state on 0 
and 1. So skip q5 and then replace q5 by q3 in the rest. 

 

Step 6: Now combine set 1 and set 2 as: 

 

Now it is the transition table of minimized DFA. 

Transition diagram of minimized DFA: 
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         Fig: Minimized DFA 

 

FA with output :- 

Moore machine 

In the theory of computation, a Moore machine is a finite-state machine whose output 

values are determined only by its current state. This is in contrast to a Mealy machine, 

whose (Mealy) output values are determined both by its current state and by the values 

of its inputs. The Moore machine is named after Edward F. Moore, who presented the 

concept in a 1956 paper, ―Gedanken-experiments on Sequential Machines.‖ 

A Moore machine can be defined as a 6-tuple  consisting of the following: 

 A finite set of states  

 A start state (also called initial state)  which is an element of  

 A finite set called the input alphabet  

 A finite set called the output alphabet  

 A transition function  mapping a state and the input alphabet to the next state 

 An output function  mapping each state to the output alphabet 

A Moore machine can be regarded as a restricted type of finite-state transducer. 

 

 

https://en.wikipedia.org/wiki/Theory_of_computation
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Mealy_machine
https://en.wikipedia.org/wiki/Edward_F._Moore
https://en.wikipedia.org/wiki/Thought_experiment
https://en.wikipedia.org/wiki/N-tuple
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Alphabet_(computer_science)
https://en.wikipedia.org/wiki/Alphabet_(computer_science)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Finite-state_transducer
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Mealy machine 

Finite automata may have outputs corresponding to each transition. There are two 
types of finite state machines that generate output − 

 Mealy Machine 

 Moore machine 

Mealy Machine 

A Mealy Machine is an FSM whose output depends on the present state as well as the 
present input. 

It can be described by a 6 tuple (Q, ∑, O, δ, X, q0) where − 

 Q is a finite set of states. 

 ∑ is a finite set of symbols called the input alphabet. 

 O is a finite set of symbols called the output alphabet. 

 δ is the input transition function where δ: Q × ∑ → Q 

 X is the output transition function where X: Q × ∑ → O 

 q0 is the initial state from where any input is processed (q0 ∈ Q). 

The state table of a Mealy Machine is shown below − 

Present state 

Next state 

input = 0 input = 1 

State Output State Output 

→ a b x1 c x1 

b b x2 d x3 

c d x3 c x1 

d d x3 d x2 
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The state diagram of the above Mealy Machine is − 

 

Moore Machine 

Moore machine is an FSM whose outputs depend on only the present state. 

A Moore machine can be described by a 6 tuple (Q, ∑, O, δ, X, q0) where − 

 Q is a finite set of states. 

 ∑ is a finite set of symbols called the input alphabet. 

 O is a finite set of symbols called the output alphabet. 

 δ is the input transition function where δ: Q × ∑ → Q 

 X is the output transition function where X: Q → O 

 q0 is the initial state from where any input is processed (q0 ∈ Q). 

The state table of a Moore Machine is shown below − 

Present state 

Next State 

Output 

Input = 0 Input = 1 

→ a b c x2 

b b d x1 
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c c d x2 

d d d x3 

The state diagram of the above Moore Machine is − 

 

Mealy Machine vs. Moore Machine 

The following table highlights the points that differentiate a Mealy Machine from a 
Moore Machine. 

Mealy Machine Moore Machine 

Output depends both upon the present 

state and the present input 

Output depends only upon the present state. 

Generally, it has fewer states than Moore 

Machine. 

Generally, it has more states than Mealy 

Machine. 

The value of the output function is a 

function of the transitions and the changes, 

when the input logic on the present state is 

done. 

The value of the output function is a function 

of the current state and the changes at the 

clock edges, whenever state changes occur. 
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Mealy machines react faster to inputs. 

They generally react in the same clock 

cycle. 

In Moore machines, more logic is required to 

decode the outputs resulting in more circuit 

delays. They generally react one clock cycle 

later. 

Moore Machine to Mealy Machine 

Algorithm 4 

Input − Moore Machine 

Output − Mealy Machine 

Step 1 − Take a blank Mealy Machine transition table format. 

Step 2 − Copy all the Moore Machine transition states into this table format. 

Step 3 − Check the present states and their corresponding outputs in the Moore 
Machine state table; if for a state Qi output is m, copy it into the output columns of the 
Mealy Machine state table wherever Qi appears in the next state. 

Example 

Let us consider the following Moore machine − 

Present State 

Next State 

Output 

a = 0 a = 1 

→ a d b 1 

b a d 0 

c c c 0 

d b a 1 

Now we apply Algorithm 4 to convert it to Mealy Machine. 

Step 1 & 2 − 
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Present State 

Next State 

a = 0 a = 1 

State Output State Output 

→ a d  b  

b a  d  

c c  c  

d b  a  

Step 3 − 

Present State 

Next State 

a = 0 a = 1 

State Output State Output 

=> a d 1 b 0 

b a 1 d 1 

c c 0 c 0 

d b 0 a 1 
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Mealy Machine to Moore Machine 

Algorithm 5 

Input − Mealy Machine 

Output − Moore Machine 

Step 1 − Calculate the number of different outputs for each state (Qi) that are available 
in the state table of the Mealy machine. 

Step 2 − If all the outputs of Qi are same, copy state Qi. If it has n distinct outputs, 
break Qi into n states as Qin where n = 0, 1, 2....... 

Step 3 − If the output of the initial state is 1, insert a new initial state at the beginning 
which gives 0 output. 

Example 

Let us consider the following Mealy Machine − 

Present State 

Next State 

a = 0 a = 1 

Next State Output Next State Output 

→ a d 0 b 1 

b a 1 d 0 

c c 1 c 0 

d b 0 a 1 

Here, states ‗a‘ and ‗d‘ give only 1 and 0 outputs respectively, so we retain states ‗a‘ 
and ‗d‘. But states ‗b‘ and ‗c‘ produce different outputs (1 and 0). So, we 
divide b into b0, b1 and c into c0, c1. 

Present State Next State Output 
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a = 0 a = 1 

→ a d b1 1 

b0 a d 0 

b1 a d 1 

c0 c1 C0 0 

c1 c1 C0 1 

d b0 a 0 
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UNIT-V 

 

Non-regular language:  

Pumping Lemma 

Let L be a regular language. Then there exists a constant „c‟ such that for every 
string w in L − 

|w| ≥ c 

We can break w into three strings, w = xyz, such that − 

 |y| > 0 

 |xy| ≤ c 

 For all k ≥ 0, the string xykz is also in L. 

Applications of Pumping Lemma 

Pumping Lemma is to be applied to show that certain languages are not regular. It 
should never be used to show a language is regular. 

 If L is regular, it satisfies Pumping Lemma. 

 If L does not satisfy Pumping Lemma, it is non-regular. 

Method to prove that a language L is not regular 

 At first, we have to assume that L is regular. 

 So, the pumping lemma should hold for L. 

 Use the pumping lemma to obtain a contradiction − 

o Select w such that |w| ≥ c 

o Select y such that |y| ≥ 1 

o Select x such that |xy| ≤ c 

o Assign the remaining string to z. 

o Select k such that the resulting string is not in L. 

Hence L is not regular. 

Problem 

Prove that L = {aibi | i ≥ 0} is not regular. 

Solution − 
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 At first, we assume that L is regular and n is the number of states. 

 Let w = anbn. Thus |w| = 2n ≥ n. 

 By pumping lemma, let w = xyz, where |xy| ≤ n. 

 Let x = ap, y = aq, and z = arbn, where p + q + r = n, p ≠ 0, q ≠ 0, r ≠ 0. Thus |y| ≠ 
0. 

 Let k = 2. Then xy2z = apa2qarbn. 

 Number of as = (p + 2q + r) = (p + q + r) + q = n + q 

 Hence, xy2z = an+q bn. Since q ≠ 0, xy2z is not of the form anbn. 

 Thus, xy2z is not in L. Hence L is not regular. 

 

Pushdown Automata 

o Pushdown automata is a way to implement a CFG in the same way we design 

DFA for a regular grammar. A DFA can remember a finite amount of information, 

but a PDA can remember an infinite amount of information. 

o Pushdown automata is simply an NFA augmented with an "external stack 

memory". The addition of stack is used to provide a last-in-first-out memory 

management capability to Pushdown automata. Pushdown automata can store 

an unbounded amount of information on the stack. It can access a limited 

amount of information on the stack. A PDA can push an element onto the top of 

the stack and pop off an element from the top of the stack. To read an element 

into the stack, the top elements must be popped off and are lost. 

o A PDA is more powerful than FA. Any language which can be acceptable by FA 

can also be acceptable by PDA. PDA also accepts a class of language which 

even cannot be accepted by FA. Thus PDA is much more superior to FA. 
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PDA Components: 

Input tape: The input tape is divided in many cells or symbols. The input head is read-
only and may only move from left to right, one symbol at a time. 

Finite control: The finite control has some pointer which points the current symbol 
which is to be read. 

Stack: The stack is a structure in which we can push and remove the items from one 
end only. It has an infinite size. In PDA, the stack is used to store the items temporarily. 

Formal definition of PDA: 

The PDA can be defined as a collection of 7 components: 

Q: the finite set of states 

∑: the input set 

Γ: a stack symbol which can be pushed and popped from the stack 

q0: the initial state 

Z: a start symbol which is in Γ. 
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F: a set of final states 

δ: mapping function which is used for moving from current state to next state. 

Instantaneous Description (ID) 

ID is an informal notation of how a PDA computes an input string and make a decision 
that string is accepted or rejected. 

An instantaneous description is a triple (q, w, α) where: 

q describes the current state. 

w describes the remaining input. 

α describes the stack contents, top at the left. 

Turnstile Notation: 

⊢ sign describes the turnstile notation and represents one move. 

⊢* sign describes a sequence of moves. 

For example, 

(p, b, T) ⊢ (q, w, α) 

In the above example, while taking a transition from state p to q, the input symbol 'b' is 
consumed, and the top of the stack 'T' is represented by a new string α. 

Example 1: 

Design a PDA for accepting a language {anb2n | n>=1}. 

Solution: In this language, n number of a's should be followed by 2n number of b's. 
Hence, we will apply a very simple logic, and that is if we read single 'a', we will push 
two a's onto the stack. As soon as we read 'b' then for every single 'b' only one 'a' 
should get popped from the stack. 

The ID can be constructed as follows: 

1. δ(q0, a, Z) = (q0, aaZ)   

2. δ(q0, a, a) = (q0, aaa)   
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Now when we read b, we will change the state from q0 to q1 and start popping 
corresponding 'a'. Hence, 

1. δ(q0, b, a) = (q1, ε)   

Thus this process of popping 'b' will be repeated unless all the symbols are read. Note 
that popping action occurs in state q1 only. 

1. δ(q1, b, a) = (q1, ε)   

After reading all b's, all the corresponding a's should get popped. Hence when we read 
ε as input symbol then there should be nothing in the stack. Hence the move will be: 

1. δ(q1, ε, Z) = (q2, ε)   

Where 

PDA = ({q0, q1, q2}, {a, b}, {a, Z}, δ, q0, Z, {q2}) 

We can summarize the ID as: 

1. δ(q0, a, Z) = (q0, aaZ)   

2. δ(q0, a, a) = (q0, aaa)   

3. δ(q0, b, a) = (q1, ε)   

4. δ(q1, b, a) = (q1, ε)   

5. δ(q1, ε, Z) = (q2, ε)   

Now we will simulate this PDA for the input string "aaabbbbbb". 

1. δ(q0, aaabbbbbb, Z) ⊢ δ(q0, aabbbbbb, aaZ)   

2.                     ⊢ δ(q0, abbbbbb, aaaaZ)   

3.                     ⊢ δ(q0, bbbbbb, aaaaaaZ)   

4.                     ⊢ δ(q1, bbbbb, aaaaaZ)   

5.                     ⊢ δ(q1, bbbb, aaaaZ)   

6.                     ⊢ δ(q1, bbb, aaaZ)   

7.                     ⊢ δ(q1, bb, aaZ)   

8.                     ⊢ δ(q1, b, aZ)   

9.                     ⊢ δ(q1, ε, Z)   

10.                     ⊢ δ(q2, ε)         

11.                       ACCEPT   

Example 2: 

Design a PDA for accepting a language {0n1m0n | m, n>=1}. 
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Solution: In this PDA, n number of 0's are followed by any number of 1's followed n 
number of 0's. Hence the logic for design of such PDA will be as follows: 

Push all 0's onto the stack on encountering first 0's. Then if we read 1, just do nothing. 
Then read 0, and on each read of 0, pop one 0 from the stack. 

For instance: 

 

This scenario can be written in the ID form as: 

1. δ(q0, 0, Z) = δ(q0, 0Z)   

2. δ(q0, 0, 0) = δ(q0, 00)   

3. δ(q0, 1, 0) = δ(q1, 0)   

4. δ(q0, 1, 0) = δ(q1, 0)   

5. δ(q1, 0, 0) = δ(q1, ε)   

6. δ(q0, ε, Z) = δ(q2, Z)      (ACCEPT state)   

Now we will simulate this PDA for the input string "0011100". 

1. δ(q0, 0011100, Z) ⊢ δ(q0, 011100, 0Z)   
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2.                   ⊢ δ(q0, 11100, 00Z)   

3.                   ⊢ δ(q0, 1100, 00Z)   

4.                   ⊢ δ(q1, 100, 00Z)   

5.                   ⊢ δ(q1, 00, 00Z)   

6.                   ⊢ δ(q1, 0, 0Z)   

7.                   ⊢ δ(q1, ε, Z)   

8.                   ⊢ δ(q2, Z)   

9.                     ACCEPT   
 

 

Introduction to Turing Machine and its elementary applications to recognition of a 

language and computation of functions 

A Turing Machine is an accepting device which accepts the languages (recursively 
enumerable set) generated by type 0 grammars. It was invented in 1936 by Alan 
Turing. 

Definition 

A Turing Machine (TM) is a mathematical model which consists of an infinite length 
tape divided into cells on which input is given. It consists of a head which reads the 
input tape. A state register stores the state of the Turing machine. After reading an 
input symbol, it is replaced with another symbol, its internal state is changed, and it 
moves from one cell to the right or left. If the TM reaches the final state, the input string 
is accepted, otherwise rejected. 

A TM can be formally described as a 7-tuple (Q, X, ∑, δ, q0, B, F) where − 

 Q is a finite set of states 

 X is the tape alphabet 

 ∑ is the input alphabet 

 δ is a transition function; δ : Q × X → Q × X × {Left_shift, Right_shift}. 

 q0 is the initial state 

 B is the blank symbol 

 F is the set of final states 

Comparison with the previous automaton 

The following table shows a comparison of how a Turing machine differs from Finite 
Automaton and Pushdown Automaton. 
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Machine Stack Data Structure Deterministic? 

Finite Automaton N.A Yes 

Pushdown Automaton Last In First Out(LIFO) No 

Turing Machine Infinite tape Yes 

Example of Turing machine 

Turing machine M = (Q, X, ∑, δ, q0, B, F) with 

 Q = {q0, q1, q2, qf} 

 X = {a, b} 

 ∑ = {1} 

 q0 = {q0} 

 B = blank symbol 

 F = {qf } 

δ is given by − 

Tape alphabet symbol Present State „q0‟ Present State „q1‟ Present State „q2‟ 

a 1Rq1 1Lq0 1Lqf 

b 1Lq2 1Rq1 1Rqf 

Here the transition 1Rq1 implies that the write symbol is 1, the tape moves right, and 
the next state is q1. Similarly, the transition 1Lq2 implies that the write symbol is 1, the 
tape moves left, and the next state is q2. 

Time and Space Complexity of a Turing Machine 

For a Turing machine, the time complexity refers to the measure of the number of 
times the tape moves when the machine is initialized for some input symbols and the 
space complexity is the number of cells of the tape written. 

Time complexity all reasonable functions − 
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T(n) = O(n log n) 

TM's space complexity − 

S(n) = O(n) 

 

A TM accepts a language if it enters into a final state for any input string w. A language 
is recursively enumerable (generated by Type-0 grammar) if it is accepted by a Turing 
machine. 

A TM decides a language if it accepts it and enters into a rejecting state for any input 
not in the language. A language is recursive if it is decided by a Turing machine. 

There may be some cases where a TM does not stop. Such TM accepts the language, 
but it does not decide it. 

Designing a Turing Machine 

The basic guidelines of designing a Turing machine have been explained below with 
the help of a couple of examples. 

Example 1 

Design a TM to recognize all strings consisting of an odd number of α‘s. 

Solution 

The Turing machine M can be constructed by the following moves − 

 Let q1 be the initial state. 

 If M is in q1; on scanning α, it enters the state q2 and writes B (blank). 

 If M is in q2; on scanning α, it enters the state q1 and writes B (blank). 

 From the above moves, we can see that M enters the state q1 if it scans an even 
number of α‘s, and it enters the state q2 if it scans an odd number of α‘s. 
Hence q2 is the only accepting state. 

Hence, 

M = {{q1, q2}, {1}, {1, B}, δ, q1, B, {q2}} 

where δ is given by − 

Tape alphabet symbol Present State „q1‟ Present State „q2‟ 

α BRq2 BRq1 
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Example 2 

Design a Turing Machine that reads a string representing a binary number and erases 
all leading 0‘s in the string. However, if the string comprises of only 0‘s, it keeps one 0. 

Solution 

Let us assume that the input string is terminated by a blank symbol, B, at each end of 
the string. 

The Turing Machine, M, can be constructed by the following moves − 

 Let q0 be the initial state. 

 If M is in q0, on reading 0, it moves right, enters the state q1 and erases 0. On 
reading 1, it enters the state q2 and moves right. 

 If M is in q1, on reading 0, it moves right and erases 0, i.e., it replaces 0‘s by B‘s. 
On reaching the leftmost 1, it enters q2 and moves right. If it reaches B, i.e., the 
string comprises of only 0‘s, it moves left and enters the state q3. 

 If M is in q2, on reading either 0 or 1, it moves right. On reaching B, it moves left 
and enters the state q4. This validates that the string comprises only of 0‘s and 
1‘s. 

 If M is in q3, it replaces B by 0, moves left and reaches the final state qf. 

 If M is in q4, on reading either 0 or 1, it moves left. On reaching the beginning of 
the string, i.e., when it reads B, it reaches the final state qf. 

Hence, 

M = {{q0, q1, q2, q3, q4, qf}, {0,1, B}, {1, B}, δ, q0, B, {qf}} 

where δ is given by − 

Tape 

alphabet 

symbol 

Present 

State „q0‟ 

Present 

State „q1‟ 

Present 

State „q2‟ 

Present 

State „q3‟ 

Present 

State „q4‟ 

0 BRq1 BRq1 ORq2 - OLq4 

1 1Rq2 1Rq2 1Rq2 - 1Lq4 

B BRq1 BLq3 BLq4 OLqf BRqf 

 


